《分数除以整数》教学反思【10篇】(范例推荐)
《分数除以整数》教学反思1 《分数除以整数》这节课的关键在于学生是通过自主探究获得分数除以整数的计算方法的。学生对新知识的学习必须以已有的知识和学习经验作为基础,因此正确分析学生的知识基础和学习经下面是小编为大家整理的《分数除以整数》教学反思【10篇】(范例推荐),供大家参考。

《分数除以整数》教学反思1
《分数除以整数》这节课的关键在于学生是通过自主探究获得分数除以整数的计算方法的。学生对新知识的学习必须以已有的知识和学习经验作为基础,因此正确分析学生的知识基础和学习经验就显得格外重要。我认为分数除以整数的学习基础在于以下几点:分数与小数的"转化;分数的意义;分数乘法的意义;倒数的知识;商不变的性质等。这些知识在以前的学习中,学生都有了足够的掌握,有了上面的基础保障,我觉得把研究新知识的权力交给学生是完全可以的。
整节课通过学生自己动手设计板书,上台展示,自我总结,发现方法,其中必要的操作是比不可少的。本节课中理解分数除以整数的计算方法的算理是这节课的重点和难点,学生经过动手操作,将实验中的图与式子对应起来,通过图形,学生直观感知了“4/5÷2”可以表示为“4/5里有4个1/5,把4个1/5*均分成2份,每份就是2/5,从而理解计算方法。同时也直观感知了”4/5÷2就是把4/5*均分成2份,每份是多少,可以理解为求4/5的1/2是多少,即4/5×1/2,真正理解“分数除以整数(0除外)等于分数乘这个整数的倒数“的计算方法。由于理解算理,学生能正确地掌握计算法则,课堂上表现在学生顺利完成4/5÷3的计算。
整节课,孩子们情绪比较激动,课堂纪律不太好,讲解的过程缺乏详细,只会照板书读下来,对于质疑环节,孩子们不太会提问,这在以后的课堂中要加以锻炼。
《分数除以整数》教学反思2
这节课的教学目标是分数除法的意义以及分数除以整数的算理和计算方法。本节课为使学生理解分数除法的意义,我先对整数除法进行了复习。从整数除法迁移到分数除法,在例题教学中,通过让学生画一画,折一折,在具体操作中理解分数除以整数。在理解分数除以整数的.算理时,我创设了折纸的操作活动,让学生大胆猜想,在学生猜想后,我放手让孩子用自己的方法来验证,然后全班交流。学生操作时,先要求学生在草稿本上画一画,再让学生折纸,在折纸时学生出现两种折纸的方法。
一种竖着折,即*均分成两份;一种横着着,即转化为求这张纸五分之四的二分之一。在共同交流的同时,我有意识的选择竖着折的这种先讲,让学生明白为什么是分子除以2;再问学生有没有不同的,再请学生上前讲,通过学生的讲解和我的引导让学生理解了为什么可以乘以除数的倒数。
在用不同方法解决了问题后,让学生选择自己喜欢的一种并说明理由。然后出现除数3的这种,按第一种方法做,行不通;按第二种方法能够顺利解决。进一步让学生明白除以一个数等于乘以它的倒数。学生感知第二种方法是最优的选择。
虽然本节课学生明白了意义,知道了算理,达成了目标,但本课仍存在着明显的不足之处:如在学生自主探究与合作交流时以及学生展评时没有给学生更多的表达空间,总结方法及优化时应放手让学生去多说,学生在计算时出现错误时,让学生具体说说错误的原因,不要急于进行下一阶段内容。这是我在今后的课堂教学中应该注意的问题。
《分数除以整数》教学反思3
本节课的教学旨在突出算理的理解和算法的掌握。在重点的学习上,利用学生已有的知识经验,通过情境创设,让学生回忆整数除法的意义,并迁移到分数除法中;难点教学时通过图形结合帮助学生直观、透彻地理解算理,学生在折一折、涂一涂的过程中逐步发现分数除法的计算方法,进一步诱导学生经历从特殊到一般的探索过程,从中悟“把一个数*均分成几份,就是求这个数的几分之一是多少”。
首先,利用学生已有的知识经验,创设问题情境,让学生回忆整数除法的意义,并迁移到分数除法中;
然后,设置问题情境,让学生先猜测分数除以整数的计算方法,再集体验证计算方法;通过折一折、涂一涂等动手操作活动,把抽象的知识具体化,在直观认识中理解算理,明确算法,从而学生领悟“把一个数*均分成几份,就是求这个数的几分之一是多少”,的"意义。
练习设计,由易到难,层层递进,在情境中应用知识解决问题,思维得到拓展,知识得到提高。 在巩固应用环节,通过在情境中笔算、解决问题、思维拓展这样具有层次性的练习题,使学生不仅在计算中巩固并熟练掌握计算方法,而且思维能力得到培养。整堂课我倡导以学生自主探究为主线,将把更多的时间、空间留给学生,充分调动学生的主体参与,让学生在积极主动的参与、探索中发现知识;鼓励学生采取多样化计算,使学生在不同思维,不同方法,不同角度的认识中解决问题,领悟知识,形成自己知识体系。当学生总结出算理之后,让学生通过小组交流、同桌交流、师生互动等多种形式,强化知识在学生头脑中的形成。
《分数除以整数》教学反思4
我所执教的《分数除以整数》是人教版第十一册30页的内容,本课是在学生学习了分数单位,分数乘法的意义,以及分数乘法计算方法的基础上进行教学的,通过教学可为学生理解分数除法的计算法则和应用题的.数量关系,为学习分数四则混合运算打下基础。
我认为本节课的重点:使学生理解分数除法的意义和分数除以整数的计算方法。
难点:使学生学会分析分数除以整数的计算方法,并能运用法则正确计算。
关键:对除法算式意义的理解
此外,我认为分数除以整数的教学基础,还在于以下几点,分数与小数的互化,倒数的知识,商不变性质等,基于这样的认识,我认为必须找到学生思维的起点,找到知识的来源。由此我制定了适合本节课的学习目标和教学法的设计思路
知识落实点:
1、知道分数除法的意义与整数除法意义相同
2、掌握分数除以整数的计算法则
能力训练点:
1、培养学生的分析、比较和综合能力
2、引导学生根据已有的知识大胆的尝试,体验解决问题,多样性。
3、渗透转化的教学思考方法,培养学生的归纳概括能力。
情感渗透点:
苏霍姆林斯基曾说过:“引导学生能借助已有的经验去获取知识,这是最高的教学技巧之所在。”本环节的设计通过让学生动手操作、自主探究、合作交流等方式,体验了“探索——发现——验证——修改”的过程,通过一系列活动,使学生完成了知识的自我建构,同时也加深了学生对分数除以整数意义的理解,符合学生的发展需要。引导学生探索知识间的内在联系,培养学生自主学习和发展创新意识。
计算教学,把计算方法直接告诉学生,然后进行大量的训练。这样尽管也能让学生熟练掌握算法,但学生只知其然,不知其所以然。只能是机械模仿练习,但当我们给以一定的情境时,使问题生活化,用生活中的经历来学习数学,来理解推导分数除法的计算方法,既可以培养学生的学习能力和探究能力,促进学生的发展,也是课程改革理念在计算教学中的具体体现,同时也可提高学生学习效率。
《分数除以整数》教学反思5
我在仔细钻研教材的基础上,对教材创设的情景进行了适当的修改,以适应学生的自主探究。
首先,我用画图示意:把1米长的线段,*均分成了10份,然后取其中的9份,问得到的是多少米?学生回答了9/10米和0.9米2种答案,接着我出示问题:把一条9/10米的线段*均分成3份,每份是多少米?学生开始画图或演算。
[设计意图:使学生理解分数的意义,理解分数除以整数的意义,并能把分数除法与分数乘法有机地联系起来,最后还想让学生学会转化的数学思想。]
生1:9/103=93/10=3/10(米)
生2:9/10=0.9 0.93=0.3(米)
生3:9/103=9/101/3=3/10(米)
生4:9/103=9/103/1=3/10(米)
生5:9/103=27/10 27/109=3/10(米)
师生共同分析每一种解答方法,师:谁能说明方法一的理由?生1:9/10表示有9段,所以把9除以3,得到每一份是3段,也就是3/10;生2:为什么10不要去除以3呢?生3:因为10表示的是整体;生4:因为10表示的是把整体*均分成了10份,我们在*均分成3份时,整体还是被*均分成10份的,所以分母不变。(同学们在讲解的时候,老师随着画出了示意图。)随着图示的演示,同学们都表示能理解这种方法。师:谁能解释第二种方法?生:因为我们没有学过分数的除法,但我们学过小数的除法,所以我把9/10化为小数,这样我就会做了。师:很棒,你们已经能通过恰当的转化利用我们学会了的内容来解决还不会的内容,这是一种很好的思维方法。师:能解释第三种方法吗?除法怎么会变为乘法的呢?生1:我们在把除法变为乘法的时候,同时把3变为了它的倒数。生2:为什么9/10就不变呢?你的这种变化的理由是什么呢?李响:因为把9/10米*均分成3份,每一份就是三分之一。生还是不很明白,黄钺虎:因为把9/10米*均分成3份,取其中的一份就是9/10的1/3,9/10的1/3是多少,我们可以用乘法计算来解决,9/101/3,除法算式的含义和这个乘法算式的含义是一样的,所以可以这样转换。(在同学讲述的时候,老师在线段图上示意,帮助学生理解。)师:请同学们仔细观察这种转换过程中,哪些是要变的?哪些是不能变的?生:除法变成了乘法,除数变成了它的倒数,而被除数是不能变的,只要照写就可以了。师:谁能解释第四种方法?大家都说是巧合,是凑出来的。我示意同学们让这位同学说说他的想法,这位同学说,他看到*均分成3份就去乘以3,结果发现不对,因为从图上看出结果应该是3/10,后来想到27/10只有除以9才可以等于3/10,所以就除以9了。(学生受到分数乘法的负迁移影响,这种迁移又和图形上的理解发生冲突,如何解决了?学生采用了杜撰的方法。)在老师和同学们的帮助下,这名同学懂得了自己的错误所在。师:第5种方法我们今天不解释,等我们学完了后面的知识再来研究这个方法。
我还没来得及往下讲,文盛迫不及待地站起来说:老师,我认为第一种方法和第二种方法不是最好的方法,你看7/133,用第一种方法和第二种方法就行不通了。老师和学生一道验证,同学们发现了问题:分子除以3得到了一个无限小数,第一种方法确实行不通;那第二重方法呢?同学们在实际计算中,又发现了7/13也不能化为有限小数,因此大家都同意文盛同学的看法,这个题只有用第三种方法来解决最合适,老师示意同学们用第三种方法来解决这个问题。就在同学们快速完成学习任务的同时,李响同学站起来说:老师,我发现当分数的分子除以分母可以得到一个整数时,第一种方法简单;当分子除以整数得到的结果不是整数时,第三种方法简单。师:你们真的了不起,不仅学会了方法,还能根据实际情况灵活选用。
教学反思:首先我深入了解了教材的编写意图,特别是从苏教版的教师教学用书上细致地理解了转化和把分数除法和分数乘法联系起来的教学思路,因此,我联想了学生已有的知识基础,对分数的认识和分数乘法意义的理解,由于我在学习分数乘法的教学过程中特别强调了对分数意义的理解和分数乘法运算的理解,因此我认为我的学生完全可以利用已有的知识把分数除法与分数乘法联系起来。同时,我又看到了一篇教学反思上,写到学生把分数转化为小数来解决,我认为也是比较可取的,因为它的出现说明了学生学会了转化的数学思想。想到这里,我决定对教材的情境加以修改,因为教材中出现的6/7是不好转化为小数的,它将限制学生的思维;
同时,我还看到了一位老师借助分毛线的实物操作来帮助学生理解分数除法的意义,但我认为五年级的学生要实现从形象到抽象的过度了,因此,我想通过线段图又和实物紧密联系的思维模式让学生解决所遇到的问题。这样课一开始,我就出示了线段,并演示得到了9/10米的过程,加强学生对分数意义的理解,唤醒学生在学习分数乘法时储备了的知识,由于我的精心设计学生能凭借自己的努力,在解决问题的过程中,不断产生新问题,通过思维的交流和碰撞,学生深层次地理解了每一种计算方法和其中隐含的数学思想,而思维活跃的学生更是对方法的优劣进行评价,用实例说明优与劣的原因所在,让大家心服口服,还有的则能根据不同的情况来区别对待。我觉得他们是了不起的。就算是学困生也都借助图形语言理解了问题的答案,尽管他们的方法不是正确的,但他们有他们的思维过程,他们找到了自己出错的原因,所以我感觉这样的课堂大家都在努力,大家都在收获。而我所做的就是对问题的设计和对细节的引发思考。当然,我也遇到了一定的问题,如:是不是每个问题都给所有的学生留下了思维的时间和空间,肯怕是没有实现的;还有,学生出现的第5种方法,我没有及时给学生明确的答复,他们会有什么想法,他们会不会不理解甚至还会在练习中采用呢?这个问题又该如何处理呢?
《分数除以整数》教学反思6
这节课的教学目标是分数除法的意义以及分数除以整数的算理和计算方法。本节课为使学生理解分数除法的意义,我先对整数除法进行了复习。从整数除法迁移到分数除法,在例题教学中,通过让学生画一画,折一折,在具体操作中理解分数除以整数。在理解分数除以整数的算理时,我创设了折纸的操作活动,让学生大胆猜想,在学生猜想后,我放手让孩子用自己的方法来验证,然后全班交流。学生操作时,先要求学生在草稿本上画一画,再让学生折纸,在折纸时学生出现两种折纸的方法。
一种竖着折,即*均分成两份;一种横着着,即转化为求这张纸五分之四的二分之一。在共同交流的同时,我有意识的选择竖着折的这种先讲,让学生明白为什么是分子除以2;再问学生有没有不同的,再请学生上前讲,通过学生的讲解和我的引导让学生理解了为什么可以乘以除数的倒数。
在用不同方法解决了问题后,让学生选择自己喜欢的一种并说明理由。然后出现除数3的这种,按第一种方法做,行不通;按第二种方法能够顺利解决。进一步让学生明白除以一个数等于乘以它的倒数。学生感知第二种方法是最优的选择。
虽然本节课学生明白了意义,知道了算理,达成了目标,但本课仍存在着明显的不足之处:如在学生自主探究与合作交流时以及学生展评时没有给学生更多的表达空间,总结方法及优化时应放手让学生去多说,学生在计算时出现错误时,让学生具体说说错误的原因,不要急于进行下一阶段内容。这是我在今后的课堂教学中应该注意的问题。
《分数除以整数》教学反思7
在这个教学片段中,我没有一味地执行教案,而是以学定教,因势利导地利用生成性资源进行了教学,才使学生创造出了绚丽的思维景观,由于生1的回答,才便于我搅动学生思维的涟漪,使学生原有的知识、经验接受到了挑战,从而促使学生去探究、去创造,以寻求新的答案,就使得学生的思维进一步深化。有人喜欢循规蹈矩,由分数乘法的法则类推出分数除以整数的计算方法,用分子除以分子的商作分子,分母除以分母的商作分母;有人喜欢标新立异,得出4/5除以2就是求4/5的1/2是多少;有人喜欢提出疑问,在用第一、二种方法能解决4/5除以2时,竟然提出这两种方法都不能解决4/53;也有人喜欢追准不舍,生2在曲折不*处奋力向前,一波未*,一波又起地掀起了思维的波澜,他根据分数的基本性质来解决问题。如此循环往复,一步步地逼近真理,一次比一次飞溅起更高的思维浪花。
此时,我由衷地佩服他们这群创造课堂亮丽风景的学生们,细细琢磨,不过是给了学生随心所欲的自由,结果创造就成了水到渠成的事。看来,学生是金子,只要我们把主动权还给他们,充分发掘他们自身的潜能,允许学生用自己的大脑思考,用自己的嘴巴表达,就能发出思想的光芒。
《分数除以整数》教学反思8
出示这样一组信息:
出示:一只小鸟小时飞行12千米。1小时行多少千米?
你会用线段图表示条件吗? (师生一起画出线段图)
求小鸟1小时飞行多少千米,算式怎么列?
这是整数除以分数(板书课题)
1、12÷怎样计算呢?
学生可能有以下三种方法:
(1) 12÷=12÷0.2 (这是转化成整数除以小数进行计算。)
你还能否根据线段图发现不同的解法呢?
(2) 12×5 (这是根据线段图理解的。)
为什么乘5?能在图中解释一下吗?
(3) 12÷1×5 (说出这种做法的同学是班上一个比较认真的孩子,看的出她很动脑子,但是解释的并不是很清楚。)
(4) (12×5)÷(×5)=60 (这是根据商不变的规律进行计算的。)
师:从计算上面来看似乎第二种算法最简单!
这时有学生举手说:我认为整数除以分数,可以除以他的倒数!(我看的出来他在课前已经看过书了。)
师:对,你真聪明,大家从刚才的第二种方法也能看出来,12÷= 12×5,那这个结论到底对不对呢?我们一起在来看例题。
教学反思:
课堂的一开始,我并没有直接从书本例题开始讨论,而是从一个除数是几分之一的简单例子推想出结论,在让孩子们来考虑是否适用于所有的例子呢。这样的安排,让学生们能真正理解整数除以分数的算理,让学生们的思维有一个缓冲阶段,这样更有利于学生思维的拓展,并没有把学生的思维束缚在整数除以分数的一般计算方法中。以这样的教学,我相信肯定会给学生的发展带来更大的空间。
《分数除以整数》教学反思9
整个教学是成功的,具体表现在:学生始终以积极的态度投入每一个环节的学习中,在主动进行探究的过程中,对“÷2”的算法有了具体的认识,并且分析思考出分数除以整数的一般性计算法则。
(1)学习内容来自于生活。
这节课中,选择了生活中打毛衣用的红毛线,用它作为研究问题的着眼点,让学生主动地进行观察、猜测和思考,创设了富有挑战性的问题情景。看的出来,学生对红毛线的实际长度大胆地进行估测的过程,是极感兴趣的,参与的热情破高;教师借此,用分数表示这根红毛线的实际长度,并动手操作把它截成相等的两段,让学生提出数学问题,同时再一次让学生估计“÷2”的结果,充分体现了《新课程标准》要求的“学生的数学学习内容应当是现实的、有意义的、富有挑战性的”这一理念。
(2)解题方法来自于学生。
面对新知识的学习,不是教师去讲解,而是让学生自主探求解决问题的方法。这为学生提供了充分的学习空间,学生的思维是发散的,学生的方法是多样的。学习活动中,学生自己去思考、去经历、去交流,对“÷2”的研究确实很到位,想出了画图的方法和计算的方法,而且计算的方法不是唯一的。从研究的结果看,说明学生有很强的求知欲,有去经历学习过程、探索过程的强烈热情,这是学生个体的需要,也是张扬学生个性的过程。这一过程恰恰体现了学生们具有学习的主动性和主体意识。《分数除法应用题》的教学反思
德国教育家第斯多惠说过这样一段话:如果使学生习惯于简单地接受和被动地工作,任何方法都是坏的;如果能激发学生的主动性,任何方法都是好的。反思整个教学过程,我认为这节课教学的成功之处有以下几方面:
1、教学内容“生活化”
《国家数学课程标准》指出:“数学教学应该是,从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”纵观整节课的教学,从引入、新课、巩固等环节的取材都是来自于学生的生活实际,使学生感到数学就在自己的身边。
2、解题方法“多样化”
《数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性领域目标。而这一目标的实现除了依靠学生自身的生理条件和原有的认知水*以外,还需要相应的外部环境。这节课上学生一共提出了5种解题方法,其中有3种是我们*时不常用的,第5种是我也没有想到的。我从学生的需要出发及时调整了教案,让每一个想发言的学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,原本素不相识的师生在短短40分钟的时间里就产生了情感上的交融。学生有了运用知识解决简单问题的成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。虽然后面还有两个练习没有来得及做,但我认为对一个问题的深入研究比盲目地做十道题收获更大,这种收获不单单体现在知识上,更体现在情感、态度与价值观方面。
3、师生交流“情感化”
数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力实现师生关系的民主与*等,改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,教师所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,教师没有任何过多的讲解,有学生讲不清楚,教师也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,教师也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。
4、值得商榷的几个方面:
(1)形式能否再开放一些
(2)优生“吃好”了,能否让差生也“吃饱”
《分数除以整数》教学反思10
分数除以整数教学反思:一文支持一种观点:没有人能教数学,而是激发学生自己去学数学。学生要想牢固地掌握数学,就必须用内心的创造与体验来学习数学。
数学课上老师“把所有的问题都自己扛”,而学生依旧是“剪不清,理还乱”,作为教师我们是否应尝试另一种途径:鼓励学生大胆动手尝试,引导学生自己寻求解决问题的方法。
小学数学第十一册中有这样一课《分数除以整数》,在分数除以整数的法则推导过程中,教科书以线段图帮助学生理解。也许是线段图总是与数学联系在一起,所以学生对它没有太大兴趣。在教学中,我插入了一个操作题,让学生在动手操作中,去自己发现总结法则,尝试着象数学家一样去不断发现探索,结合计算机课件的使用,学生的学习兴趣立刻得到提高。
准备三张同样大小的长方形纸,把这三张纸都*均分成3份,其中两份涂上阴影,
(1)把第一张纸的2/3,*均分成二份,怎样折,每份是原来这张纸的多少?你能列出算式,并根据折纸求出答案吗?
(2)用折纸的方法求出2/3divide;4、2/3divide;6的答案。
(3)在折纸操作中,你发现除法算式的结果是怎样得到的?
在同学们自己动手操作、小组合议的基础上,得出了分数除以整数的计算法则。这个法则不是教师讲解的,不是书本提示的,而是同学们在自己的动手操作中,借用已有经验自己发现,总结出来的。看来每位学生都有成为数学家的天份,就看教师能否带动学生,让学生自己去体验数学符号的内涵。
同样也是“做数学”,我校张秋菊老师的一节“角的度量”课,更让我体会到“做”的重要。她改变了原有的教材呈现方式,在“做”数学中体验知识的产生与发展。
本节课原教材是先让学生认识量角器,告诉学生什么是角,再教给学生如何测量角度的大小,最后告诉学生角的大小与边的长短无关。旧教材老师教知识,教方法,学生被动接受,张教师转变了教材的呈现,让学生在“做”中体验学习的方法,知识的生成。
张老师在教学从“用扇子折角”开始,带给学生一个有趣的、需要思考的问题情境,使学生在自然的情境中生成学习的兴趣与动机,教学中的这种现实情境是学生在自己的生活中能见到的,听到的,感受到的,也可以是他们在数学或其他学科学习过程中能够思考或操作的,属于思维上的现实。
面对着情境中已生成的数学问题,老师并不忙于告诉学生答案,而是让学生在一次次折角中知道90deg;45deg;30deg;15deg;角。再试着折一个角,学生在求解遇到了困难,此时用电教媒体来解决角的问题。在这个过程中学生经历了求解的过程,给学生思维的空间,在老师的帮助下自己动手动脑“做”数学,用观察、模仿、实验、猜想等手段获得体验,从而学会运用数学解决生活中的问题。
这两节课都体现了以下的特点:
⑴强调动手实践活动,从周围生活选取活动材料。
⑵在强调知识学习的同时,更强调对学习方法、思维方法、学习态度的培养。
⑶提倡合作学习。
在美国国家委员会的《人人关心:数学教育的未来》的报告中有这样一句话“实在来说,没有人能教数学,而是激发学生自己去学数学。学生要想牢固地掌握数学,就必须用内心的创造与体验来学习数学。”学生不仅要用自己的脑子去思考,而且要用自己的眼睛去看,用自己的耳朵去听,用自己的嘴去说,用自己的手去操作,在用自己的身体去亲自经历,同时,用自己的心灵去亲自感悟。在操作、实践、考察、探究、经历过程中,去自己发掘新的知识,新的规律,也许这些发现是幼稚的,但这必竟是孩子们自己的一次尝试性的探索,无数次的这种探索才能使学生渐渐的体会出数学奇怪符号所代表的意义与哲理。这正是《新课标》中提倡的“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”。这种“做数学”的方法,把以定型化、定量化写在书中的无味数学知识,还以丰富的思维过程,将数学课本激活,使之恢复活性和灵性。把古板的定义变得脉脉含情,把艰深的算理变得*易近人,把枯燥的计算变得丰富多彩。通过学生自己的努力,实现了数学思维的再现,弥补了课本的不足,还学生以生动、精彩、充实的数学。
《分数除以整数》教学反思10篇扩展阅读
《分数除以整数》教学反思10篇(扩展1)
——《分数除以整数》教学反思10篇
《分数除以整数》教学反思1
本节课的教学旨在突出算理的理解和算法的掌握。在重点的学习上,利用学生已有的知识经验,通过情境创设,让学生回忆整数除法的意义,并迁移到分数除法中;难点教学时通过图形结合帮助学生直观、透彻地理解算理,学生在折一折、涂一涂的过程中逐步发现分数除法的计算方法,进一步诱导学生经历从特殊到一般的探索过程,从中悟“把一个数*均分成几份,就是求这个数的几分之一是多少”。
首先,利用学生已有的知识经验,创设问题情境,让学生回忆整数除法的意义,并迁移到分数除法中;
然后,设置问题情境,让学生先猜测分数除以整数的计算方法,再集体验证计算方法;通过折一折、涂一涂等动手操作活动,把抽象的知识具体化,在直观认识中理解算理,明确算法,从而学生领悟“把一个数*均分成几份,就是求这个数的几分之一是多少”,的"意义。
练习设计,由易到难,层层递进,在情境中应用知识解决问题,思维得到拓展,知识得到提高。 在巩固应用环节,通过在情境中笔算、解决问题、思维拓展这样具有层次性的练习题,使学生不仅在计算中巩固并熟练掌握计算方法,而且思维能力得到培养。整堂课我倡导以学生自主探究为主线,将把更多的时间、空间留给学生,充分调动学生的主体参与,让学生在积极主动的参与、探索中发现知识;鼓励学生采取多样化计算,使学生在不同思维,不同方法,不同角度的认识中解决问题,领悟知识,形成自己知识体系。当学生总结出算理之后,让学生通过小组交流、同桌交流、师生互动等多种形式,强化知识在学生头脑中的形成。
《分数除以整数》教学反思2
我所执教的《分数除以整数》是人教版第十一册30页的内容,本课是在学生学习了分数单位,分数乘法的意义,以及分数乘法计算方法的基础上进行教学的,通过教学可为学生理解分数除法的计算法则和应用题的.数量关系,为学习分数四则混合运算打下基础。
我认为本节课的重点:使学生理解分数除法的意义和分数除以整数的计算方法。
难点:使学生学会分析分数除以整数的计算方法,并能运用法则正确计算。
关键:对除法算式意义的理解
此外,我认为分数除以整数的教学基础,还在于以下几点,分数与小数的互化,倒数的知识,商不变性质等,基于这样的认识,我认为必须找到学生思维的起点,找到知识的来源。由此我制定了适合本节课的学习目标和教学法的设计思路
知识落实点:
1、知道分数除法的意义与整数除法意义相同
2、掌握分数除以整数的计算法则
能力训练点:
1、培养学生的分析、比较和综合能力
2、引导学生根据已有的知识大胆的尝试,体验解决问题,多样性。
3、渗透转化的教学思考方法,培养学生的归纳概括能力。
情感渗透点:
苏霍姆林斯基曾说过:“引导学生能借助已有的经验去获取知识,这是最高的教学技巧之所在。”本环节的设计通过让学生动手操作、自主探究、合作交流等方式,体验了“探索——发现——验证——修改”的过程,通过一系列活动,使学生完成了知识的自我建构,同时也加深了学生对分数除以整数意义的理解,符合学生的发展需要。引导学生探索知识间的内在联系,培养学生自主学习和发展创新意识。
计算教学,把计算方法直接告诉学生,然后进行大量的训练。这样尽管也能让学生熟练掌握算法,但学生只知其然,不知其所以然。只能是机械模仿练习,但当我们给以一定的情境时,使问题生活化,用生活中的经历来学习数学,来理解推导分数除法的计算方法,既可以培养学生的学习能力和探究能力,促进学生的发展,也是课程改革理念在计算教学中的具体体现,同时也可提高学生学习效率。
《分数除以整数》教学反思3
这节课的教学目标是分数除法的意义以及分数除以整数的算理和计算方法。本节课为使学生理解分数除法的意义,我先对整数除法进行了复习。从整数除法迁移到分数除法,在例题教学中,通过让学生画一画,折一折,在具体操作中理解分数除以整数。在理解分数除以整数的算理时,我创设了折纸的操作活动,让学生大胆猜想,在学生猜想后,我放手让孩子用自己的方法来验证,然后全班交流。学生操作时,先要求学生在草稿本上画一画,再让学生折纸,在折纸时学生出现两种折纸的方法。
一种竖着折,即*均分成两份;一种横着着,即转化为求这张纸五分之四的二分之一。在共同交流的同时,我有意识的选择竖着折的这种先讲,让学生明白为什么是分子除以2;再问学生有没有不同的,再请学生上前讲,通过学生的讲解和我的引导让学生理解了为什么可以乘以除数的倒数。
在用不同方法解决了问题后,让学生选择自己喜欢的一种并说明理由。然后出现除数3的这种,按第一种方法做,行不通;按第二种方法能够顺利解决。进一步让学生明白除以一个数等于乘以它的倒数。学生感知第二种方法是最优的选择。
虽然本节课学生明白了意义,知道了算理,达成了目标,但本课仍存在着明显的不足之处:如在学生自主探究与合作交流时以及学生展评时没有给学生更多的表达空间,总结方法及优化时应放手让学生去多说,学生在计算时出现错误时,让学生具体说说错误的原因,不要急于进行下一阶段内容。这是我在今后的课堂教学中应该注意的问题。
《分数除以整数》教学反思4
反思与探索
学生们是简单而纯洁的,他们总是睁大一双明亮的眼睛去观察身边的一切,用一颗真诚无暇的心作出判断和选择:过于理性、抽象、过于繁难或简单、脱离生活的数学课都会令其产生畏惧、厌烦的心理。虽然他们已经习惯于面对经过人为加工的纯数学问题,习惯于把自己熟悉的方法或公式复制到模型中就能解决问题。但常此以往,必然会降低学生从实际生活中收集、组合信息形成数学问题的能力,更可怕的是他们会逐渐拉开与数学的距离。其实数学和生活的关系是这样的密切,关注学生的生活,了解他们的学习基础和生活经验,创设贴近生活的情境,激发探究的欲望,枯燥的计算也能变得如此有趣!学生从中感受到的不仅是生动活泼的教学气氛,还有教师对他们的一份尊重与信任!
良好的开端是成功的一半。课开头设计的猜一猜环节一下子就激起了学生的兴趣。在学生七嘴八舌之后,教师却并不急于揭示答案,而是不紧不慢地提供一条信息,我一人,占这次上课教师人数的,这样的设计是建立在学生已有的知识基础上的,学生可以用整数方法解答,同时这一个也让学生在解决问题的过程中初步感悟分数除法的算理,为下面进一步学习分数除法埋下伏笔。而利用中秋节巧妙引入例题,既合情合理又自然有趣,原来数学就在自己的身边!
学习数学,不能仅仅停留在掌握知识的层面上,必须学会思考和应用。我们的数学课要着力培养学生的应用意识。让学生能认识到现实生活中蕴涵着大量的数学信息,面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。 在拓展练习中提升对知识的认识,主动寻求知识的应用领域,才能开辟更为广阔的空间!所以看着学生们主动而开心地用他们所学的知识轻松去解决身边的问题,感觉真的很欣慰。
《分数除以整数》教学反思5
本节内容是在学生掌握了分数乘法和分数除以整数的计算方法基础上继续探索一个数除以分数的计算方法。例2结合整数除法的问题,“每人吃2个,可以分给几人?”激活学生对除法数量关系的回忆,并用这个数量关系列出求吃每人吃1/2 个、1/3个、1/4个,可以分给几人的算式,然后通过观察、操作探索出一个数除以几分之一就等于这个数乘以几分之一的倒数。例3是对一个数除以几分之一方法的拓展。通过在条形图上分一分,让学生直接得到4÷的结果,再利用例2得到的方法算一算,发现结果是相同的。最后,通过对两个例题的比较,归纳出整数除以分数的方法。练一练和练习十一的5——8主要是让学生巩固新学的计算方法,并与分数乘法和前一节课分数除以整数的方法作对比,沟通新旧知识的联系,形成较完整的知识体系。 学生学习整数除以分数后,部分中下生出现了这样的问题:
(1)把被除数的整数写成的倒数;
(2)把被除数的整数和除数的分数都写成了倒数。严重受到负迁移影响。在教学中如何克服呢?首先要让学生明确算理:整数除以分数,等于整数乘以这个分数的倒数,实质上是被除数除以除数等于被除数乘以除数的倒数。其次,要加强比较训练:整数除以分数、分数除以整数的题目进行分组练习,以强化加深理解整数除以分数的算理。
《分数除以整数》教学反思6
在这个教学片段中,我没有一味地执行教案,而是以学定教,因势利导地利用生成性资源进行了教学,才使学生创造出了绚丽的思维景观,由于生1的回答,才便于我搅动学生思维的涟漪,使学生原有的知识、经验接受到了挑战,从而促使学生去探究、去创造,以寻求新的答案,就使得学生的思维进一步深化。有人喜欢循规蹈矩,由分数乘法的法则类推出分数除以整数的计算方法,用分子除以分子的商作分子,分母除以分母的商作分母;有人喜欢标新立异,得出4/5除以2就是求4/5的1/2是多少;有人喜欢提出疑问,在用第一、二种方法能解决4/5除以2时,竟然提出这两种方法都不能解决4/53;也有人喜欢追准不舍,生2在曲折不*处奋力向前,一波未*,一波又起地掀起了思维的波澜,他根据分数的基本性质来解决问题。如此循环往复,一步步地逼近真理,一次比一次飞溅起更高的思维浪花。
此时,我由衷地佩服他们这群创造课堂亮丽风景的学生们,细细琢磨,不过是给了学生随心所欲的自由,结果创造就成了水到渠成的事。看来,学生是金子,只要我们把主动权还给他们,充分发掘他们自身的潜能,允许学生用自己的大脑思考,用自己的嘴巴表达,就能发出思想的光芒。
《分数除以整数》教学反思7
教学目标:
1、在教师的鼓励引导下,学生积极地调动已有的知识经验,主动探求整数除以分数的计算方法。
2、通过师生的分析与交流,学生能较快地理解整数除以分数的算理,尝试自己归纳计算法则,初步掌握整数除以分数的计算法则,能正确地进行有关的分数除法计算,并解决生活中一些简单问题。
3、结合具体情境学生进一步体会估算在生活中的广泛应用,增强数学应用意识,感受分数除法与生活的密切联系。
教学准备:
多媒体课件、小黑板。
教学过程:
从生活中引入计算也可以如此有趣!
1、 初步感悟: 知道今天是什么日子吗?(生齐声:中秋节!)对,中秋节!在这样特殊的日子里,能和六1班的同学一起学习一定是段令人难忘的经历。据我所知,昨天和今天来自南京市各个区的多位数学老师到咱们学校借班上课,我只是其中的一个。请大家猜一猜,这两天共有多少老师来上课?
(学生议论纷纷;师:多了,少了,差不多了)
这样吧,老师提供一条信息:我来自秦淮区第一中心小学,众多老师中只有我一人是咱们区的老师,占这次上课教师人数的。这下能知道共有多少位老师到你们学校上课吗? (学生们迅速回答出有14位老师。)
2、 创设情境:前面提到中秋节,这可是我们*人很重要的一个传统节日,你知道中秋节有哪些风俗?(生:吃月饼;晚上合家吃团圆饭;赏月;吃石榴)其实现在生活条件这么好,大家并不在意晚上那顿丰盛的晚餐,每逢佳节倍思亲,是浓浓的亲情牵挂着人们的心,对吗?那首歌唱得多好呀:常回家看看,回家看看这不,陈宇的爸爸也匆匆往家赶请看屏幕。
出示例题:陈宇的爸爸在郊区工作,中秋节要回家与亲人团聚,他从单位骑摩托车到家要1小时,骑了18千米时发现用了小时,爸爸每小时行多少千米?
反思与探索
学生们是简单而纯洁的,他们总是睁大一双明亮的眼睛去观察身边的一切,用一颗真诚无暇的心作出判断和选择:过于理性、抽象、过于繁难或简单、脱离生活的数学课都会令其产生畏惧、厌烦的心理。虽然他们已经习惯于面对经过人为加工的纯数学问题,习惯于把自己熟悉的方法或公式复制到模型中就能解决问题。但常此以往,必然会降低学生从实际生活中收集、组合信息形成数学问题的能力,更可怕的是他们会逐渐拉开与数学的距离。其实数学和生活的关系是这样的密切,关注学生的生活,了解他们的学习基础和生活经验,创设贴近生活的情境,激发探究的欲望,枯燥的计算也能变得如此有趣!学生从中感受到的不仅是生动活泼的教学气氛,还有教师对他们的一份尊重与信任!
良好的开端是成功的一半。课开头设计的猜一猜环节一下子就激起了学生的兴趣。在学生七嘴八舌之后,教师却并不急于揭示答案,而是不紧不慢地提供一条信息,我一人,占这次上课教师人数的,这样的设计是建立在学生已有的知识基础上的,学生可以用整数方法解答,同时这一个也让学生在解决问题的过程中初步感悟分数除法的算理,为下面进一步学习分数除法埋下伏笔。而利用中秋节巧妙引入例题,既合情合理又自然有趣,原来数学就在自己的身边!学生的探究就从这里开始了
※ 在经历中体验这样的探究很有意思!
1、 捕捉信息:看了题目,你从中得到了哪些信息?有什么发现?
2、 引导估算:(在师生合作完成线段图后)出示完整的线段图
提问:这个线段图你们能看懂吗?能看图,估计一下1小时行多少千米?
怎么能看出来?说出你的想法。
1小时行?千米
小时行?千米
小时行18千米
(思考片刻后有生回答:从图中能看出,全长是18千米的三倍多一点,估计爸爸1小时大约行五、六十千米。)
3、 探求算法: 这只是估计,究竟每小时行多少千米?你打算怎么计算?用什么方法?选择你喜欢的方法具体算一算,算过后可以和小组中其他同学交流一下。(学生尝试用不同的方法解答,教师巡视。)
4、 交流分析:
1、学生代表汇报结果,有以下几种算法:
a、18310 = 60(千米) 先求1份即小时行的,再求10份;
b、180.3 = 60(千米) 把小时化成小数0.3小时;
c、18(103)= 60(千米)先求总长是已经行的路程的几倍;
d、18=18=60(千米)
利用数量关系速度=路程时间,直接乘除数的倒数。
2、让学生充分阐释前几种算法的算理。
3、教师重点引导方法d的证明与理解。
指出:同学们阐述了用整数、小数、分数乘法解答的理由,非常不错。
而这是一道分数除法算式, 18 =18=60(千米)
你是又根据什么来列式的? (板书:速度=路程时间)
与昨天学习的知识相比,有什么不同?整数除以分数(板书课题)
追问:你怎么想到用这种方法计算的?这样做的理由是什么?为什么可以转化成乘法来做?
A利用线段图说明算理:
学生先看图说说自己的理解。(从图上看, 1小时是小时的三倍多一些,1小时行路程的也是18千米的三倍多一些,具体说是倍。)接着出示:线段图(屏显:三个18千米闪动。)
1小时行?千米
小时行?千米
18千米 18千米 18千米
B用其他方法验证算理:
谁能用其他方法验证?用方法a、18310 和方法c、18(103)说明。
师随即板书思路18310=1810=18=60(千米)
18(103) = 18=60(千米)
5、 对比说明:同学们想出不同的方法来解决同一个问题,尽管大家思考的角度不同,但有一点是相同的都是积极地把新知识转化成已经学过的知识来解决,这一点老师非常欣赏,实际上这也是在数学学习中解决问题的一个重要思路。
那么在这些计算方法中,你觉得哪一种算法比较好?,谁能证明自己的方法更简便,说出其它算法的不简便?(学生回答时教师必须注意设置矛盾)
6、 归纳算法:想一想,整数除以分数在计算时转化成什么样的计算?你们能归纳一下吗?
反思与探索
在学习数的运算的过程中,我们的课堂除了要为学生营造一种
生动活泼的教学气氛外,更重要的是应充分尊重学生的思想、情感、意志和行为方式,使学生形成探究创新的心理愿望和性格特征。让他们可以在自由的时空里主动地探索,大胆地发现,自信地表达,快乐地运用!
掌握整数除以分数的算法是这节课的重点,但计算方法的得出决不应是教师塞给学生的,学生对算理的认识也不应是机械的,一切必须建立在放手让学生经历自主探索的过程上。会计算并不难,能理解为什么要这么算才是难点。教师充分尊重每个学生的选择,重视每个学生的表达,爸爸1小时行?千米学生面对这个具体的问题选择了不同的算法,他们有各自的理解和解释。教师用心倾听,及时板书,积极鼓励,适时引导:你们用不同的方法得到了同一个答案,都是积极地把新知识转化成已经学过的知识来解决,这一点老师非常欣赏!究竟每种解法代表什么思路,哪种方法更合适?18 =18=60(千米)又有其他解法不具备的哪些优点? 学生在探索实际问题的过程中,经历估计、求解、比较、分析、交流、验证、归纳几个环节,从而心服口服地接受了分数除法计算方法的正确性与合理性。
在应用中提升我们喜欢做这样的练习!
(在完成两组基本练习题之后,教师出示了下面的一组题,学生表现出浓厚的兴趣,积极思考,踊跃回答。)
你能用分数除法的知识解决下面的问题吗(先估一估,再算一算。)
(1)妈妈想为中秋节的晚餐添一道菜螃蟹,她在农贸市场选中的一种螃蟹,用90元可以买千克,妈妈带了120元,够不够买1千克?
(学生们估算后又通过计算得出120元不够买1千克。但很快就有学生说:老师,妈妈可以只买120元的螃蟹呀;还有学生说:妈妈可以还价说不定就够买1千克呢!)
(2)为迎接20xx年十运会,张伯伯所在的工艺品厂赶制一批纪念品,张伯伯用小时做了20件,想想他1小时能做完30件吗?
(3)国庆长假期间陈晨要去看望爷爷奶奶,一家三口开汽车从家
出发,小时行驶了50千米,已知陈晨家到爷爷家有100千
米的距离,他们1小时能到达吗?
(有学生这么估算:1小时的就是1小时的一大半时间行了50千米,剩下的时间肯定行不完另一个50千米的。接着有人反驳:如果剩下的时候里他们加速,也许1小时就可以到达爷爷家。又有人补充:那可要注意安全呀!)
反思与探索
学习数学,不能仅仅停留在掌握知识的层面上,必须学会思考和应用。我们的数学课要着力培养学生的应用意识。让学生能认识到现实生活中蕴涵着大量的数学信息,面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。 在拓展练习中提升对知识的认识,主动寻求知识的应用领域,才能开辟更为广阔的空间!所以看着学生们主动而开心地用他们所学的知识轻松去解决身边的问题,感觉真的很欣慰。
《分数除以整数》教学反思8
出示这样一组信息:
出示:一只小鸟小时飞行12千米。1小时行多少千米?
你会用线段图表示条件吗? (师生一起画出线段图)
求小鸟1小时飞行多少千米,算式怎么列?
这是整数除以分数(板书课题)
1、12÷怎样计算呢?
学生可能有以下三种方法:
(1) 12÷=12÷0.2 (这是转化成整数除以小数进行计算。)
你还能否根据线段图发现不同的解法呢?
(2) 12×5 (这是根据线段图理解的。)
为什么乘5?能在图中解释一下吗?
(3) 12÷1×5 (说出这种做法的同学是班上一个比较认真的孩子,看的出她很动脑子,但是解释的并不是很清楚。)
(4) (12×5)÷(×5)=60 (这是根据商不变的规律进行计算的。)
师:从计算上面来看似乎第二种算法最简单!
这时有学生举手说:我认为整数除以分数,可以除以他的倒数!(我看的出来他在课前已经看过书了。)
师:对,你真聪明,大家从刚才的第二种方法也能看出来,12÷= 12×5,那这个结论到底对不对呢?我们一起在来看例题。
教学反思:
课堂的一开始,我并没有直接从书本例题开始讨论,而是从一个除数是几分之一的简单例子推想出结论,在让孩子们来考虑是否适用于所有的例子呢。这样的安排,让学生们能真正理解整数除以分数的算理,让学生们的思维有一个缓冲阶段,这样更有利于学生思维的拓展,并没有把学生的思维束缚在整数除以分数的一般计算方法中。以这样的教学,我相信肯定会给学生的发展带来更大的空间。
《分数除以整数》教学反思9
《小学数学课程标准》中明确地指出,动手实践、自主探索与合作交流是学生学习数学的重要方式。在这节课中“动手操作”是学生在理解算理的思维过程中建立表象的必要手段。通过学生分一分、画一画,理解4/5和1/2的意义,同时感受到了结果2/5是怎样来的过程。学生在这一过程中,建立了2/5的表象,既可以表示4个1/5*均分成2份,也可表示求4/5的1/2是多少。通过这一过程,学生已经为后面算理的概括,提供了第一手、不可缺少的感性材料。
然后再出现“如果4/5升果汁*均分给3个小朋友喝,每人喝多少升?”,让学生用上述方法来解决这一问题4/5÷3。引发认知冲突,从而得出第二种方法,也就是“分数除以整数(0除外),就是分数乘以这个数的倒数”。
让学生真正地从分数意义和分数乘法的意义上去理解分数除以整数的计算算理。其实也在渗透着一种“转化”的数学思想,让学生感受到在解决问题时,我们可以把一些新的问题转化成已有的方法来进行解决。而方法上的比较只是为了在方法上的`取舍。
通过一节课的教学,课堂作业的反馈,本人发现,学生在做题目时会出现这样的错误,
一、除号变成乘号,但除数没有变成它的倒数。
二、分子和整数直接约分,计算。
三、把被除数和除数都变成了它的倒数,然后约分计算。
要针对以上错误情况,教给学生正确的计算方法。
《分数除以整数》教学反思10
本节课的教学旨在突出算理的理解和算法的掌握。在重点的学习上,利用学生已有的知识经验,通过情境创设,让学生回忆整数除法的意义,并迁移到分数除法中;难点教学时通过图形结合帮助学生直观、透彻地理解算理,学生在折一折、涂一涂的过程中逐步发现分数除法的计算方法,进一步诱导学生经历从特殊到一般的探索过程,从中悟“把一个数*均分成几份,就是求这个数的几分之一是多少”。
首先,利用学生已有的知识经验,创设问题情境,让学生回忆整数除法的意义,并迁移到分数除法中;
然后,设置问题情境,让学生先猜测分数除以整数的计算方法,再集体验证计算方法;通过折一折、涂一涂等动手操作活动,把抽象的知识具体化,在直观认识中理解算理,明确算法,从而学生领悟“把一个数*均分成几份,就是求这个数的几分之一是多少”,的意义。
练习设计,由易到难,层层递进,在情境中应用知识解决问题,思维得到拓展,知识得到提高。 在巩固应用环节,通过在情境中笔算、解决问题、思维拓展这样具有层次性的练习题,使学生不仅在计算中巩固并熟练掌握计算方法,而且思维能力得到培养。整堂课我倡导以学生自主探究为主线,将把更多的时间、空间留给学生,充分调动学生的主体参与,让学生在积极主动的参与、探索中发现知识;鼓励学生采取多样化计算,使学生在不同思维,不同方法,不同角度的认识中解决问题,领悟知识,形成自己知识体系。当学生总结出算理之后,让学生通过小组交流、同桌交流、师生互动等多种形式,强化知识在学生头脑中的形成。
《分数除以整数》教学反思10篇(扩展2)
——《分数除以整数》教学反思10篇
《分数除以整数》教学反思1
我所执教的《分数除以整数》是人教版第十一册30页的内容,本课是在学生学习了分数单位,分数乘法的意义,以及分数乘法计算方法的基础上进行教学的,通过教学可为学生理解分数除法的计算法则和应用题的.数量关系,为学习分数四则混合运算打下基础。
我认为本节课的重点:使学生理解分数除法的意义和分数除以整数的计算方法。
难点:使学生学会分析分数除以整数的计算方法,并能运用法则正确计算。
关键:对除法算式意义的理解
此外,我认为分数除以整数的教学基础,还在于以下几点,分数与小数的互化,倒数的知识,商不变性质等,基于这样的认识,我认为必须找到学生思维的起点,找到知识的来源。由此我制定了适合本节课的学习目标和教学法的设计思路
知识落实点:
1、知道分数除法的意义与整数除法意义相同
2、掌握分数除以整数的计算法则
能力训练点:
1、培养学生的分析、比较和综合能力
2、引导学生根据已有的知识大胆的尝试,体验解决问题,多样性。
3、渗透转化的教学思考方法,培养学生的归纳概括能力。
情感渗透点:
苏霍姆林斯基曾说过:“引导学生能借助已有的经验去获取知识,这是最高的教学技巧之所在。”本环节的设计通过让学生动手操作、自主探究、合作交流等方式,体验了“探索——发现——验证——修改”的过程,通过一系列活动,使学生完成了知识的自我建构,同时也加深了学生对分数除以整数意义的理解,符合学生的发展需要。引导学生探索知识间的内在联系,培养学生自主学习和发展创新意识。
计算教学,把计算方法直接告诉学生,然后进行大量的训练。这样尽管也能让学生熟练掌握算法,但学生只知其然,不知其所以然。只能是机械模仿练习,但当我们给以一定的情境时,使问题生活化,用生活中的经历来学习数学,来理解推导分数除法的计算方法,既可以培养学生的学习能力和探究能力,促进学生的发展,也是课程改革理念在计算教学中的具体体现,同时也可提高学生学习效率。
《分数除以整数》教学反思2
我在仔细钻研教材的基础上,对教材创设的情景进行了适当的修改,以适应学生的自主探究。
首先,我用画图示意:把1米长的线段,*均分成了10份,然后取其中的9份,问得到的是多少米?学生回答了9/10米和0.9米2种答案,接着我出示问题:把一条9/10米的线段*均分成3份,每份是多少米?学生开始画图或演算。
[设计意图:使学生理解分数的意义,理解分数除以整数的意义,并能把分数除法与分数乘法有机地联系起来,最后还想让学生学会转化的数学思想。]
生1:9/103=93/10=3/10(米)
生2:9/10=0.9 0.93=0.3(米)
生3:9/103=9/101/3=3/10(米)
生4:9/103=9/103/1=3/10(米)
生5:9/103=27/10 27/109=3/10(米)
师生共同分析每一种解答方法,师:谁能说明方法一的理由?生1:9/10表示有9段,所以把9除以3,得到每一份是3段,也就是3/10;生2:为什么10不要去除以3呢?生3:因为10表示的是整体;生4:因为10表示的是把整体*均分成了10份,我们在*均分成3份时,整体还是被*均分成10份的,所以分母不变。(同学们在讲解的时候,老师随着画出了示意图。)随着图示的演示,同学们都表示能理解这种方法。师:谁能解释第二种方法?生:因为我们没有学过分数的除法,但我们学过小数的除法,所以我把9/10化为小数,这样我就会做了。师:很棒,你们已经能通过恰当的转化利用我们学会了的内容来解决还不会的内容,这是一种很好的思维方法。师:能解释第三种方法吗?除法怎么会变为乘法的呢?生1:我们在把除法变为乘法的时候,同时把3变为了它的倒数。生2:为什么9/10就不变呢?你的这种变化的理由是什么呢?李响:因为把9/10米*均分成3份,每一份就是三分之一。生还是不很明白,黄钺虎:因为把9/10米*均分成3份,取其中的.一份就是9/10的1/3,9/10的1/3是多少,我们可以用乘法计算来解决,9/101/3,除法算式的含义和这个乘法算式的含义是一样的,所以可以这样转换。(在同学讲述的时候,老师在线段图上示意,帮助学生理解。)师:请同学们仔细观察这种转换过程中,哪些是要变的?哪些是不能变的?生:除法变成了乘法,除数变成了它的倒数,而被除数是不能变的,只要照写就可以了。师:谁能解释第四种方法?大家都说是巧合,是凑出来的。我示意同学们让这位同学说说他的想法,这位同学说,他看到*均分成3份就去乘以3,结果发现不对,因为从图上看出结果应该是3/10,后来想到27/10只有除以9才可以等于3/10,所以就除以9了。(学生受到分数乘法的负迁移影响,这种迁移又和图形上的理解发生冲突,如何解决了?学生采用了杜撰的方法。)在老师和同学们的帮助下,这名同学懂得了自己的错误所在。师:第5种方法我们今天不解释,等我们学完了后面的知识再来研究这个方法。
我还没来得及往下讲,文盛迫不及待地站起来说:老师,我认为第一种方法和第二种方法不是最好的方法,你看7/133,用第一种方法和第二种方法就行不通了。老师和学生一道验证,同学们发现了问题:分子除以3得到了一个无限小数,第一种方法确实行不通;那第二重方法呢?同学们在实际计算中,又发现了7/13也不能化为有限小数,因此大家都同意文盛同学的看法,这个题只有用第三种方法来解决最合适,老师示意同学们用第三种方法来解决这个问题。就在同学们快速完成学习任务的同时,李响同学站起来说:老师,我发现当分数的分子除以分母可以得到一个整数时,第一种方法简单;当分子除以整数得到的结果不是整数时,第三种方法简单。师:你们真的了不起,不仅学会了方法,还能根据实际情况灵活选用。
教学反思:首先我深入了解了教材的编写意图,特别是从苏教版的教师教学用书上细致地理解了转化和把分数除法和分数乘法联系起来的教学思路,因此,我联想了学生已有的知识基础,对分数的认识和分数乘法意义的理解,由于我在学习分数乘法的教学过程中特别强调了对分数意义的理解和分数乘法运算的理解,因此我认为我的学生完全可以利用已有的知识把分数除法与分数乘法联系起来。同时,我又看到了一篇教学反思上,写到学生把分数转化为小数来解决,我认为也是比较可取的,因为它的出现说明了学生学会了转化的数学思想。想到这里,我决定对教材的情境加以修改,因为教材中出现的6/7是不好转化为小数的,它将限制学生的思维;
同时,我还看到了一位老师借助分毛线的实物操作来帮助学生理解分数除法的意义,但我认为五年级的学生要实现从形象到抽象的过度了,因此,我想通过线段图又和实物紧密联系的思维模式让学生解决所遇到的问题。这样课一开始,我就出示了线段,并演示得到了9/10米的过程,加强学生对分数意义的理解,唤醒学生在学习分数乘法时储备了的知识,由于我的精心设计学生能凭借自己的努力,在解决问题的过程中,不断产生新问题,通过思维的交流和碰撞,学生深层次地理解了每一种计算方法和其中隐含的数学思想,而思维活跃的学生更是对方法的优劣进行评价,用实例说明优与劣的原因所在,让大家心服口服,还有的则能根据不同的情况来区别对待。我觉得他们是了不起的。就算是学困生也都借助图形语言理解了问题的答案,尽管他们的方法不是正确的,但他们有他们的思维过程,他们找到了自己出错的原因,所以我感觉这样的课堂大家都在努力,大家都在收获。而我所做的就是对问题的设计和对细节的引发思考。当然,我也遇到了一定的问题,如:是不是每个问题都给所有的学生留下了思维的时间和空间,肯怕是没有实现的;还有,学生出现的第5种方法,我没有及时给学生明确的答复,他们会有什么想法,他们会不会不理解甚至还会在练习中采用呢?这个问题又该如何处理呢?
《分数除以整数》教学反思3
在这个教学片段中,我没有一味地执行教案,而是以学定教,因势利导地利用生成性资源进行了教学,才使学生创造出了绚丽的思维景观,由于生1的回答,才便于我搅动学生思维的涟漪,使学生原有的知识、经验接受到了挑战,从而促使学生去探究、去创造,以寻求新的答案,就使得学生的思维进一步深化。有人喜欢循规蹈矩,由分数乘法的法则类推出分数除以整数的计算方法,用分子除以分子的商作分子,分母除以分母的商作分母;有人喜欢标新立异,得出4/5除以2就是求4/5的1/2是多少;有人喜欢提出疑问,在用第一、二种方法能解决4/5除以2时,竟然提出这两种方法都不能解决4/53;也有人喜欢追准不舍,生2在曲折不*处奋力向前,一波未*,一波又起地掀起了思维的波澜,他根据分数的基本性质来解决问题。如此循环往复,一步步地逼近真理,一次比一次飞溅起更高的思维浪花。
此时,我由衷地佩服他们这群创造课堂亮丽风景的学生们,细细琢磨,不过是给了学生随心所欲的自由,结果创造就成了水到渠成的事。看来,学生是金子,只要我们把主动权还给他们,充分发掘他们自身的潜能,允许学生用自己的大脑思考,用自己的嘴巴表达,就能发出思想的光芒。
《分数除以整数》教学反思4
整个教学是成功的,具体表现在:学生始终以积极的态度投入每一个环节的学习中,在主动进行探究的过程中,对“÷2”的算法有了具体的认识,并且分析思考出分数除以整数的一般性计算法则。
(1)学习内容来自于生活。
这节课中,选择了生活中打毛衣用的红毛线,用它作为研究问题的着眼点,让学生主动地进行观察、猜测和思考,创设了富有挑战性的问题情景。看的出来,学生对红毛线的实际长度大胆地进行估测的过程,是极感兴趣的,参与的热情破高;教师借此,用分数表示这根红毛线的实际长度,并动手操作把它截成相等的两段,让学生提出数学问题,同时再一次让学生估计“÷2”的结果,充分体现了《新课程标准》要求的“学生的数学学习内容应当是现实的、有意义的、富有挑战性的”这一理念。
(2)解题方法来自于学生。
面对新知识的学习,不是教师去讲解,而是让学生自主探求解决问题的方法。这为学生提供了充分的学习空间,学生的思维是发散的,学生的方法是多样的。学习活动中,学生自己去思考、去经历、去交流,对“÷2”的研究确实很到位,想出了画图的方法和计算的方法,而且计算的方法不是唯一的。从研究的结果看,说明学生有很强的求知欲,有去经历学习过程、探索过程的强烈热情,这是学生个体的需要,也是张扬学生个性的过程。这一过程恰恰体现了学生们具有学习的主动性和主体意识。
《分数除以整数》教学反思5
教学片段:
师:把4/5米*均分成两份,每份是多少米?
生:4/52=2/5(米)
师:你们认为他做得对吗?
生:对
师:谁能说说你是怎样想的?又是怎样计算的?
生1:我是由分数乘法的法则类推出来的,我想2也就是2/1,我用分子除以分子的商作分子,分母除以分母的商作分母,所以4/52=2/5。
师:有不同的想法吗?
生2:我是这样想的,4/5米是4个1/5米,把4个1/5米*均分成2份,每份是两个1/5米,也就是2/5米,所以4/52=2/5(米)。
生3:4/5除以2就是把4/5米*均分成2份,求1份是多少,1份也就占总数的1/2,根据求一个数的几分之几是多少,用乘法计算,所以我能转化为分数乘法,4/52=4/51/2=2/5(米)。
师:你们对这三种方法都认可吗?
生:(一致点头)认可。
师:(点头微笑)你们觉得哪种方法更好?
生4:第一种方法不好,如果是4/53就不能除了。
师:看来第一种方法不具有普遍使用性,是吗?
生5:第二种方法也不能计算4/53类似的问题。
(此时教室里变得鸦雀无声,同学们陷入了思维的沉静,沉默片刻之后)
生6:老师,我有办法使第一、二种方法都具有普遍使用性,我根据分数的基本性质把被除数的分子、分母同时扩大3倍,不改变除数的大小写成4/53=(123)/15=4/15。
师:你的想法太有创意了,谢谢你的精彩回答。
生7:我认为这种方法还是不太好,如果是4/53/7,按这种方法计算就太麻烦了。
师:大家赞同这点意见吗?
生:同意。
师:此时你们想想,用什么样的语言来概括分数除以整数的方法?
生:
反思:
在这个教学片段中,我没有一味地执行教案,而是以学定教,因势利导地利用生成性资源进行了教学,才使学生创造出了绚丽的思维景观,由于生1的回答,才便于我搅动学生思维的涟漪,使学生原有的知识、经验接受到了挑战,从而促使学生去探究、去创造,以寻求新的答案,就使得学生的思维进一步深化。有人喜欢循规蹈矩,由分数乘法的法则类推出分数除以整数的计算方法,用分子除以分子的商作分子,分母除以分母的商作分母;有人喜欢标新立异,得出4/5除以2就是求4/5的1/2是多少;有人喜欢提出疑问,在用第一、二种方法能解决4/5除以2时,竟然提出这两种方法都不能解决4/53;也有人喜欢追准不舍,生2在曲折不*处奋力向前,一波未*,一波又起地掀起了思维的波澜,他根据分数的基本性质来解决问题。如此循环往复,一步步地逼近真理,一次比一次飞溅起更高的思维浪花。
此时,我由衷地佩服他们这群创造课堂亮丽风景的学生们,细细琢磨,不过是给了学生随心所欲的自由,结果创造就成了水到渠成的事。看来,学生是金子,只要我们把主动权还给他们,充分发掘他们自身的潜能,允许学生用自己的大脑思考,用自己的嘴巴表达,就能发出思想的光芒。
《分数除以整数》教学反思6
出示这样一组信息:
出示:一只小鸟小时飞行12千米。1小时行多少千米?
你会用线段图表示条件吗? (师生一起画出线段图)
求小鸟1小时飞行多少千米,算式怎么列?
这是整数除以分数(板书课题)
1、12÷怎样计算呢?
学生可能有以下三种方法:
(1) 12÷=12÷0.2 (这是转化成整数除以小数进行计算。)
你还能否根据线段图发现不同的解法呢?
(2) 12×5 (这是根据线段图理解的。)
为什么乘5?能在图中解释一下吗?
(3) 12÷1×5 (说出这种做法的同学是班上一个比较认真的孩子,看的出她很动脑子,但是解释的并不是很清楚。)
(4) (12×5)÷(×5)=60 (这是根据商不变的规律进行计算的。)
师:从计算上面来看似乎第二种算法最简单!
这时有学生举手说:我认为整数除以分数,可以除以他的倒数!(我看的出来他在课前已经看过书了。)
师:对,你真聪明,大家从刚才的第二种方法也能看出来,12÷= 12×5,那这个结论到底对不对呢?我们一起在来看例题。
教学反思:
课堂的一开始,我并没有直接从书本例题开始讨论,而是从一个除数是几分之一的简单例子推想出结论,在让孩子们来考虑是否适用于所有的例子呢。这样的安排,让学生们能真正理解整数除以分数的算理,让学生们的思维有一个缓冲阶段,这样更有利于学生思维的拓展,并没有把学生的思维束缚在整数除以分数的一般计算方法中。以这样的教学,我相信肯定会给学生的发展带来更大的空间。
《分数除以整数》教学反思7
整个教学是成功的,具体表现在:学生始终以积极的态度投入每一个环节的学习中,在主动进行探究的过程中,对“÷2”的算法有了具体的认识,并且分析思考出分数除以整数的一般性计算法则。
(1)学习内容来自于生活。
这节课中,选择了生活中打毛衣用的红毛线,用它作为研究问题的着眼点,让学生主动地进行观察、猜测和思考,创设了富有挑战性的问题情景。看的出来,学生对红毛线的实际长度大胆地进行估测的过程,是极感兴趣的,参与的热情破高;教师借此,用分数表示这根红毛线的实际长度,并动手操作把它截成相等的两段,让学生提出数学问题,同时再一次让学生估计“÷2”的结果,充分体现了《新课程标准》要求的“学生的数学学习内容应当是现实的、有意义的、富有挑战性的”这一理念。
(2)解题方法来自于学生。
面对新知识的学习,不是教师去讲解,而是让学生自主探求解决问题的方法。这为学生提供了充分的学习空间,学生的思维是发散的,学生的方法是多样的。学习活动中,学生自己去思考、去经历、去交流,对“÷2”的研究确实很到位,想出了画图的方法和计算的方法,而且计算的方法不是唯一的。从研究的结果看,说明学生有很强的求知欲,有去经历学习过程、探索过程的强烈热情,这是学生个体的需要,也是张扬学生个性的过程。这一过程恰恰体现了学生们具有学习的主动性和主体意识。《分数除法应用题》的教学反思
德国教育家第斯多惠说过这样一段话:如果使学生习惯于简单地接受和被动地工作,任何方法都是坏的;如果能激发学生的主动性,任何方法都是好的。反思整个教学过程,我认为这节课教学的成功之处有以下几方面:
1、教学内容“生活化”
《国家数学课程标准》指出:“数学教学应该是,从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”纵观整节课的教学,从引入、新课、巩固等环节的取材都是来自于学生的生活实际,使学生感到数学就在自己的身边。
2、解题方法“多样化”
《数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性领域目标。而这一目标的实现除了依靠学生自身的生理条件和原有的认知水*以外,还需要相应的外部环境。这节课上学生一共提出了5种解题方法,其中有3种是我们*时不常用的,第5种是我也没有想到的。我从学生的需要出发及时调整了教案,让每一个想发言的学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,原本素不相识的师生在短短40分钟的时间里就产生了情感上的交融。学生有了运用知识解决简单问题的成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。虽然后面还有两个练习没有来得及做,但我认为对一个问题的深入研究比盲目地做十道题收获更大,这种收获不单单体现在知识上,更体现在情感、态度与价值观方面。
3、师生交流“情感化”
数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力实现师生关系的民主与*等,改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,教师所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,教师没有任何过多的讲解,有学生讲不清楚,教师也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,教师也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。
4、值得商榷的几个方面:
(1)形式能否再开放一些
(2)优生“吃好”了,能否让差生也“吃饱”
《分数除以整数》教学反思8
《分数除以整数》是九年义务教育五年制第九册第三单元的内容,是在学生已掌握了分数乘法的计算方法上进行的,结合我的科研课题〈〈在小学教学中探究方式的研究〉〉精心设计了这节课,在我们组共同后于周一第五节课,我圆满地完成了这次教学任务。本节课我认为最突出的地方也就是最成功的地方在于能从课题出发,充分体现了以学生为主体的探究式的教学模式,以设疑导入激发学生的学习兴趣,在探究新知中让学生运用所学的知识可采用不同的方法来计算,发散学生的思维,小组讨论交流,总结出计算分数除以整数的方法,并小组内试举简单的例子试算,然后小组汇报方法,学生分别说出了三种计算方法,然后老师再出示习题,用自己总结的方法去计算,在汇报计算中又遇到了什么样的困难,最后总结出分数除以整数的最通用的方法。整个探究新知的过程都是有学生自主学习,主动探究的来完成的,培养学生的发散思维及发现问题、解决问题的能力。
我认为,本节课欠缺的地方是学生在合作探究中仍有个别学生没有积极参与到活动中来,而且板书不够工整。
在以后的教学中,除培养学生主动探究意识外,还应该培养学生的问题意识。我相信,在不断的努力下,探究式的学习方式定有成效。
《分数除以整数》教学反思9
教学整数除以分数时,我根据课改的要求,采用了新的教学模式------自主探究,合作交流的教学方法。体现了课堂上以学生为主体,教师为辅的思想,激发了学生的学习兴趣,课堂气氛也倍加活跃,教学效果非常好。
首先,我大胆“放”手。
出示例题后,让学生自主读题,自行列式;再推导计算方法。放手让学生自主探究,独立思考。自己发现,试着让学生用合作交流的方式归纳概括。比如,学生对18÷2/5究竟如何计算?这是本课的新知识,但是,我相信学生,放手让学生自己看线段图,然后根据图和数量关系,学生列出了算式:18÷2/5=18×1/2×5;有的同学联系以前所学的知识------乘法结合律得出:18×1/2×5=5/2,我没有想到的是,有的学生由分数除以整数的计算法则直接推想到18×5/2。所有这些想法,思路正是我在充分相信学生的基础上,学生才有了思维的天地,学生才有了展示自己学习的舞台。所以,今后的教学中我会更加的相信学生,给学生展示自己的机会,不抹杀孩子的想象空间。
其次,我引导恰如其分
综观其变,教学就是如何引导学生发挥学生在课堂上的主体作用。
所谓放,并不是放手不管,袖手旁观,恰恰相反。我敢于放手,因为我在课前对学生可能出现的种种情况做到了充分的估和与之相应的措施,这也正是我教学的特点。我的措施是如何更好的引导学生。如:学生列出18÷2/5计算式后,能及时提出研究的程序:(1)自己画图(2)看图独立进行思考(3)自己尝试求出结果。这样做能更好的使有困难的学生通过投影提示为他们的思维方式导航。与此同时我要学生合作交流,起到了彼此帮助、开导的作用。我桌间巡视,参与学生行动,特别关注较差的学生,起到了个别辅导的作用,提高了这部分学生的学习兴趣。我所做的这一切,都是对前一个环节“放”的教学的完善。这也正是我讲解形式的扩展,对“放”的教学起到了保证作用。此后,我根据学生的建议画线段图,适当引导学生归纳概括出计算方法,符合学生的认知规律和思维发展规律。
最后,激发学生的思维
大家都知道人的思维活动并不是凭空产生的,而是借助情境的刺激产生的。我灵活激发了学生的学习兴趣,使学生情趣激昂兴趣盎然地投入到学习当中去。其中运用了评价作用。如对学生回答问题声音的评价;根据学的关系式列出计算式时,我抓住学生获得知识的喜悦心情,不错过时机询问怎样计算,是我教还是自己探究学习,学生一致要求自己学。此刻的学习是学生发自内心的要求主动性相当积极,效果可想而知。
我充分调动学生的非智力因素参与学习,不仅*几句激发的语言,更多的是*我真情的关怀。
虽说这是一节比较好的课,但还存在着不称心的地方。比如对个别学生关注的少,如果给他们更多的帮助本课的效果就更好了。
《分数除以整数》教学反思10
分数除以整数教学反思:一文支持一种观点:没有人能教数学,而是激发学生自己去学数学。学生要想牢固地掌握数学,就必须用内心的创造与体验来学习数学。
数学课上老师“把所有的问题都自己扛”,而学生依旧是“剪不清,理还乱”,作为教师我们是否应尝试另一种途径:鼓励学生大胆动手尝试,引导学生自己寻求解决问题的方法。
小学数学第十一册中有这样一课《分数除以整数》,在分数除以整数的法则推导过程中,教科书以线段图帮助学生理解。也许是线段图总是与数学联系在一起,所以学生对它没有太大兴趣。在教学中,我插入了一个操作题,让学生在动手操作中,去自己发现总结法则,尝试着象数学家一样去不断发现探索,结合计算机课件的使用,学生的学习兴趣立刻得到提高。
准备三张同样大小的长方形纸,把这三张纸都*均分成3份,其中两份涂上阴影,
(1)把第一张纸的2/3,*均分成二份,怎样折,每份是原来这张纸的多少?你能列出算式,并根据折纸求出答案吗?
(2)用折纸的方法求出2/3divide;4、2/3divide;6的答案。
(3)在折纸操作中,你发现除法算式的结果是怎样得到的?
在同学们自己动手操作、小组合议的基础上,得出了分数除以整数的计算法则。这个法则不是教师讲解的,不是书本提示的,而是同学们在自己的动手操作中,借用已有经验自己发现,总结出来的。看来每位学生都有成为数学家的天份,就看教师能否带动学生,让学生自己去体验数学符号的内涵。
同样也是“做数学”,我校张秋菊老师的一节“角的度量”课,更让我体会到“做”的重要。她改变了原有的教材呈现方式,在“做”数学中体验知识的产生与发展。
本节课原教材是先让学生认识量角器,告诉学生什么是角,再教给学生如何测量角度的大小,最后告诉学生角的大小与边的长短无关。旧教材老师教知识,教方法,学生被动接受,张教师转变了教材的呈现,让学生在“做”中体验学习的方法,知识的生成。
张老师在教学从“用扇子折角”开始,带给学生一个有趣的、需要思考的问题情境,使学生在自然的情境中生成学习的兴趣与动机,教学中的这种现实情境是学生在自己的生活中能见到的,听到的,感受到的,也可以是他们在数学或其他学科学习过程中能够思考或操作的,属于思维上的现实。
面对着情境中已生成的数学问题,老师并不忙于告诉学生答案,而是让学生在一次次折角中知道90deg;45deg;30deg;15deg;角。再试着折一个角,学生在求解遇到了困难,此时用电教媒体来解决角的问题。在这个过程中学生经历了求解的过程,给学生思维的空间,在老师的帮助下自己动手动脑“做”数学,用观察、模仿、实验、猜想等手段获得体验,从而学会运用数学解决生活中的问题。
这两节课都体现了以下的特点:
⑴强调动手实践活动,从周围生活选取活动材料。
⑵在强调知识学习的同时,更强调对学习方法、思维方法、学习态度的培养。
⑶提倡合作学习。
在美国国家委员会的《人人关心:数学教育的未来》的报告中有这样一句话“实在来说,没有人能教数学,而是激发学生自己去学数学。学生要想牢固地掌握数学,就必须用内心的创造与体验来学习数学。”学生不仅要用自己的脑子去思考,而且要用自己的眼睛去看,用自己的耳朵去听,用自己的嘴去说,用自己的手去操作,在用自己的身体去亲自经历,同时,用自己的心灵去亲自感悟。在操作、实践、考察、探究、经历过程中,去自己发掘新的知识,新的规律,也许这些发现是幼稚的,但这必竟是孩子们自己的一次尝试性的探索,无数次的这种探索才能使学生渐渐的体会出数学奇怪符号所代表的意义与哲理。这正是《新课标》中提倡的“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”。这种“做数学”的方法,把以定型化、定量化写在书中的无味数学知识,还以丰富的思维过程,将数学课本激活,使之恢复活性和灵性。把古板的定义变得脉脉含情,把艰深的算理变得*易近人,把枯燥的计算变得丰富多彩。通过学生自己的努力,实现了数学思维的再现,弥补了课本的不足,还学生以生动、精彩、充实的数学。
《分数除以整数》教学反思10篇(扩展3)
——《分数除以整数》的教学反思3篇
《分数除以整数》的教学反思1
一文支持一种观点:没有人能教数学,而是激发学生自己去学数学。学生要想牢固地掌握数学,就必须用内心的创造与体验来学习数学。
数学课上老师“把所有的问题都自己扛”,而学生依旧是“剪不清,理还乱”,作为教师我们是否应尝试另一种途径:鼓励学生大胆动手尝试,引导学生自己寻求解决问题的方法。
小学数学第十一册中有这样一课《分数除以整数》,在分数除以整数的法则推导过程中,教科书以线段图帮助学生理解。也许是线段图总是与数学联系在一起,所以学生对它没有太大兴趣。在教学中,我插入了一个操作题,让学生在动手操作中,去自己发现总结法则,尝试着象数学家一样去不断发现探索,结合计算机课件的使用,学生的学习兴趣立刻得到提高。
准备三张同样大小的长方形纸,把这三张纸都*均分成3份,其中两份涂上阴影,
(1)把第一张纸的2/3,*均分成二份,怎样折,每份是原来这张纸的多少?你能列出算式,并根据折纸求出答案吗?
(2)用折纸的方法求出2/3÷4 、 2/3÷6的答案。
(3)在折纸操作中,你发现除法算式的结果是怎样得到的?
在同学们自己动手操作、小组合议的基础上,得出了分数除以整数的计算法则。这个法则不是教师讲解的,不是书本提示的,而是同学们在自己的动手操作中,借用已有经验自己发现,总结出来的。看来每位学生都有成为数学家的天份,就看教师能否带动学生,让学生自己去体验数学符号的内涵。
同样也是“做数学”,我校张秋菊老师的一节“角的度量”课,更让我体会到“做”的重要。她改变了原有的教材呈现方式,在“做”数学中体验知识的产生与发展。
本节课原教材是先让学生认识量角器,告诉学生什么是1°角,再教给学生如何测量角度的大小,最后告诉学生角的大小与边的长短无关。旧教材老师教知识,教方法,学生被动接受,张教师转变了教材的呈现,让学生在“做”中体验学习的方法,知识的生成。
张老师在教学从“用扇子折角”开始,带给学生一个有趣的、需要思考的问题情境,使学生在自然的情境中生成学习的兴趣与动机,教学中的这种现实情境是学生在自己的生活中能见到的,听到的,感受到的,也可以是他们在数学或其他学科学习过程中能够思考或操作的,属于思维上的现实。
面对着情境中已生成的数学问题,老师并不忙于告诉学生答案,而是让学生在一次次折角中知道90°、45°、30°、15°角。再试着折一个1°角,学生在求解遇到了困难,此时用电教媒体来解决1°角的问题。在这个过程中学生经历了求解的过程,给学生思维的空间,在老师的帮助下自己动手动脑“做”数学,用观察、模仿、实验、猜想等手段获得体验,从而学会运用数学解决生活中的问题。
这两节课都体现了以下的特点:
(1)强调动手实践活动,从周围生活选取活动材料。
(2)在强调知识学习的同时,更强调对学习方法、思维方法、学习态度的培养。
(3)提倡合作学习。
在美国国家委员会的《人人关心:数学教育的未来》的报告中有这样一句话“实在来说,没有人能教数学,而是激发学生自己去学数学。学生要想牢固地掌握数学,就必须用内心的创造与体验来学习数学。”学生不仅要用自己的脑子去思考,而且要用自己的眼睛去看,用自己的耳朵去听,用自己的嘴去说,用自己的手去操作,在用自己的身体去亲自经历,同时,用自己的心灵去亲自感悟。在操作、实践、考察、探究、经历过程中,去自己发掘新的知识,新的规律,也许这些发现是幼稚的,但这必竟是孩子们自己的一次尝试性的探索,无数次的这种探索才能使学生渐渐的体会出数学奇怪符号所代表的意义与哲理。这正是《新课标》中提倡的“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”。这种“做数学”的方法,把以定型化、定量化写在书中的无味数学知识,还以丰富的思维过程,将数学课本激活,使之恢复活性和灵性。把古板的定义变得脉脉含情,把艰深的算理变得*易近人,把枯燥的计算变得丰富多彩。通过学生自己的努力,实现了数学思维的再现,弥补了课本的不足,还学生以生动、精彩、充实的数学。
《分数除以整数》的教学反思2
这是一节普通的计算课,为的是以*常的教学内容为载体,研究怎样体现“三维”目标。
1、知识与技能目标。
我认为,一节课,无论它采用何种教学模式,华丽也好,朴实也好,最基本的知识和学习的技能必须得传授下去。这节课重点是要求学生理解分数除法的意义和掌握分数除以整数的计算方法,课内和课后的学生反馈可见,这一目标得以实现。
2、过程与方法目标。
知识与技能通过什么途径让学生获得?就是过程与方法的实施。这需要老师提供机会,引导学生深度参与数学活动。我把例题的数据 改成 ,目的是提供更多的"切入点,让不同层次的学生都有从旧知迁移、转化到新知的可能性。鼓励解决问题策略的多样化,体验最优化。这节课学生在一系巩固练习中充分体会到分数除以整数的最优计算方法是转化成乘这个分数的倒数。
3、情感、态度与价值观。
这一目标并不是单独存在,它其实渗透在每一个教学环节中,更不能简单地以为它代表着德育教育。本节课,学生有困惑、有惊喜、有自豪、他们有充分从事数学活动的机会, 能够自由地表达自己的想法,分享他人的喜悦,这才是数学课的魅力所在。
《分数除以整数》的教学反思3
教学整数除以分数时,我根据课改的要求,采用了新的教学模式——自主探究,合作交流的教学方法。体现了课堂上以学生为主体,教师为辅的思想,激发了学生的学习兴趣,课堂气氛也倍加活跃,教学效果非常好。
首先,我大胆“放”手。
出示例题后,让学生自主读题,自行列式;再推导计算方法。放手让学生自主探究,独立思考。自己发现,试着让学生用合作交流的方式归纳概括。比如,学生对18÷2/5究竟如何计算?这是本课的新知识,但是,我相信学生,放手让学生自己看线段图,然后根据图和数量关系,学生列出了算式:18÷2/5=18×1/2×5;有的同学联系以前所学的知识——乘法结合律得出:18×1/2×5=5/2,我没有想到的是,有的学生由分数除以整数的计算法则直接推想到18×5/2。所有这些想法,思路正是我在充分相信学生的基础上,学生才有了思维的天地,学生才有了展示自己学习的舞台。所以,今后的教学中我会更加的相信学生,给学生展示自己的机会,不抹杀孩子的想象空间。
其次,我引导恰如其分
综观其变,教学就是如何引导学生发挥学生在课堂上的主体作用。
所谓放,并不是放手不管,袖手旁观,恰恰相反。我敢于放手,因为我在课前对学生可能出现的种种情况做到了充分的估和与之相应的措施,这也正是我教学的特点。我的措施是如何更好的引导学生。如:学生列出18÷2/5计算式后,能及时提出研究的程序:
(1)自己画图
(2)看图独立进行思考
(3)自己尝试求出结果。这样做能更好的使有困难的学生通过投影提示为他们的思维方式导航。与此同时我要学生合作交流,起到了彼此帮助、开导的作用。我桌间巡视,参与学生行动,特别关注较差的学生,起到了个别辅导的作用,提高了这部分学生的学习兴趣。我所做的这一切,都是对前一个环节“放”的教学的完善。这也正是我讲解形式的扩展,对“放”的教学起到了保证作用。此后,我根据学生的建议画线段图,适当引导学生归纳概括出计算方法,符合学生的认知规律和思维发展规律。
最后,激发学生的思维
大家都知道人的思维活动并不是凭空产生的,而是借助情境的刺激产生的。我灵活激发了学生的学习兴趣,使学生情趣激昂兴趣盎然地投入到学习当中去。其中运用了评价作用。如对学生回答问题声音的评价;根据学的关系式列出计算式时,我抓住学生获得知识的喜悦心情,不错过时机询问怎样计算,是我教还是自己探究学习,学生一致要求自己学。此刻的学习是学生发自内心的要求主动性相当积极,效果可想而知。
我充分调动学生的非智力因素参与学习,不仅*几句激发的语言,更多的是*我真情的关怀。
虽说这是一节比较好的课,但还存在着不称心的地方。比如对个别学生关注的少,如果给他们更多的帮助本课的效果就更好了。
《分数除以整数》教学反思10篇(扩展4)
——《小数乘整数》教学反思10篇
《小数乘整数》教学反思1
本节课是学生第一次接触小数乘法,教材安排了例1,并且通过例1,让学生在解决实际问题的过程中掌握小数乘整数的计算方法,之后安排了一些练习巩固。而在实际的学情中,有大部分学生都会算小数乘法,知道当成整数计算,然后点上小数点,但对于为什么要这么算还很模糊这一现象,我想如果按照教材的编排进行,这样的问题没有挑战性,学生不会感兴趣,于是我从以下几个方面安排
尊重学生已有知识,让学生根据经验计算小数乘整数,并且想办法验证自己的计算是正确的来理解算理。通过课前了解学生,我发现大部分学生已会计算,因此,在教学例1时,我并不是直接引用教科书上的例题,而是从学生的生活实际出发,选择用数学周记的展现,也就是使用的是情景教学策略,给学生创设真实的学习情境,并且通
过这个情景激活学生已有的知识积淀。让学生自主的去搜集看到的小数的信息,吸引学生积极探索并理解计算方法。
然后让学生用已经学过的方法,计算出答案,学生非常活跃,并且用了不同的方法来说明自己的计算是有道理的,有的同学说:0.8元×3就是8角×3,8角×3=24角,就是2.4元;也有同学说:0.8是8个0.1,8个0.1×3=24个0.1,24个0.1就是2.4,所以0.8×3=2.4;还有同学根据意义用加法来说明。通过学生自己寻找理由说明计算的正确性,从课前的无意识的计算到现在的理解清楚了为什么要这样计算,从感性的认识上升到了理性的高度。接着让学生把已经掌握的"知识迁移到2.35×3,学生通过独立的计算和讨论,对小数乘整数有了更加深入的了解,在此环节的教学中我使用了合作学习的策略。
在整节课的学习中,学生对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,并且学生是真正课堂的主人。学生理解了计算课不是一味的算,而是需要“悟”。我在注重计算方法的掌握,计算技能的提高的同时,更强调对算理的理解和感悟。摒弃“形式化”说理,让学生经历独立尝试、思维交流、反思评价、再次体验的过程,层层深入,理解感悟算理。这样才会使计算课生动有趣。
《小数乘整数》教学反思2
这节课是小数乗整数的第一课时,主要是让学生理解小数乗整数的意义,掌握小数乗整数的计算法则,培养学生主动获取新知的能力。为了能让学生轻松的掌握新知,进一步学习小数乘法打下良好的基础。本节课中,我注意做到了以下几点:
一、引导学生自主学习、主动探究新知。
复习了整数乘法的意义及整数乘法中由因数变化引起积的变化规律,为学生学习“小数乘整数”做好了铺垫,尤其是掌握了积的变化规律,为学习小数乗整数的算理有很大的帮助。
二、注重师生间的相互交流,理解算法。
创设了一个“购买风筝”的情境,从而激发了学生的学习兴趣。在解决实际问题中自然的引出了小数乗整数的学习内容,使学生感到亲切自然,学生在浓厚的兴趣中探索新知。
在学习过程中,我注重学生的独立思考,如解决实际问题时,我让学生小组合作思考交流解决的方法,在师生的交流学习中,让学生充分的表达自己的观点与计算方法,从而得到许多有创造性的解决办法。然后在老师的启发引导下帮助学生较好地理解小数乘整数的算理及方法。
三、运用多媒体教学,激发学生的学习兴趣。
为了激发学生的学习兴趣,在探究算法阶段利用现代化教学手段,把教材中的解决问题改为生动有趣的买风筝情景,把数学知识转化为学生身边的数学,让他们乐学,主动参与。同时,注重学生是学习的主人,培养他们发现问题,解决问题的能力。
总之,这节课更关注学生的学习过程,在思考交流的学习中,给不同的学生思维发展的空间,促进了学生的发展。
《小数乘整数》教学反思3
《小数除以整数》是学生学习小数除法的开始,是在学生学习了整数除法的基础上进行教学的,本课的重点是让学生掌握小数除以整数的计算方法,难点是理解商的小数点为什么与被除数的小数点对齐的道理。为了打破传统的计算教学方法,突出新的教学理念,在教学中我体现了以下几个方面:
1、较好的处理了“算用”之间的关系
数学源于生活,用于生活。因此,在教学中,我尽量突出“算”与“用”的结合,在计算教学的同时也比较充分地体现解决问题的教学。课的开始,我出示情景图——妈妈在购买水果,已知水果的数量和总价,提出问题:每样水果的单价是多少?学生独立思考,进行列式。让学生进行小组讨论,自主解决问题,体现策略的多样性!这样处理,不但可以使学生对学习的小数除法产生兴趣,而且能让学生体会到数学在生活中所发挥的作用。
2、鼓励学生自主探索与合作探究
新课程要求教师不能把知识的结构告诉学生,而要引导学生探究结论,帮助学生在走向结论的过程中发现问题,探索规律,习得方法。而这节课中,学生已有整数除法作为基石,因此,自主探索与合作探究就成为了本课重要的学习方法。在教学中,我先让学生根据已有的知识经验对小数除以整数的方法进行探索,并通过与小数除以整数的一般方法的对比,使学生看到两种方法的联系。接着,组织学生对一些关键问题进行合作讨论(如商的小数点为什么要和被除数的小数点对齐?),帮助学生掌握小数除法的算理。让学生在数学活动的过程中主动地获取知识、形成技能、发展自身良好的数学素质并获得美好的情感体验。
从作业反馈看,学生掌握不够理想的。课堂作业全对的人数为65%左右,有错误的同学也大多不是因为算理的错误,而是由粗心马虎造成的。
本节课最大的遗憾是没有留出几时间让学生完成课堂作业,更谈不上渗透下一节课的知识,或设计一些开放型的练习供学有余力的学生拓展巩固。
《小数乘整数》教学反思4
它是在整数乘法的意义和法则的基础上进行教学的,为了使学生能够顺利地利用知识的迁移,我精心做了设计,先复习整数乘法的意义和计算方法,利用情景图,直接出示本节课的教学内容。本人觉得在计算教学课上就应省略过多的修饰,让学生在一开始就清楚自己的学习任务。“小数乘整数的方法”这个问题是我在最后时刻想出来教学过程,因为我一直都在想后面的计算方法怎样出示会显得自然流畅,那么可以在课前就打好一个伏笔,让学生提出本节课想学到的知识,教学就以他们想学到的知识展开探索并小结,这样比教师自己出示计算方法,更能体现课堂学生的主动探究学习方法。
教师直接将答案板书出来。
课前我调查过绝大多数的学生已经能够将这道题解答正确,教师可以很放心让学生自己去解决,但应给以归纳小结。
2.35是几位小数?2.35的积是几位小数?
这部分在处理时,我力求承接上面的教学内容,力求结合学生已有的知识。通过猜想——验证——归纳这一教学过程,充分调动学生的学生积极性,解决本节课的教学难点,效果很好。
然后把例题改为买书,贴近学生的生活,激发了学习兴趣。通过带有思考性的问题,引导学生思考,并大胆让学生尝试、讲解和讨论,把学生引导到计算算理的探究过程之中,找到计算的方法:因为根据148×23=3404,直接写出下面各题的积:14.8×23=148×2.3=148×0.23=1.48×23=
计算课,最关键的在于课后练习的设计,要做到层次性,新颖性,能充分调动学生的探究学习兴趣。因为如果光是枯燥的练习计算,学生很快就会疲劳。所以我采取了以上的练习设计,内容各不相同,难度逐渐加深。
有一个环节我感觉不是很理想,就是让学生观察比较总结出计算方法:小数乘整数,先按整数乘法算,然后看因数一共有几位小数,就从积的右边起数出几位,点上小数点。在班里只有几个学生回答出了,最后还是我给归纳的,很糟糕。现在想想,这个问题好象没有必要让学生去归纳,因为教材是在小数乘小数后才出现。我这样设计的意图是提前渗透,但看来还是早了。另外,练习中忽视了诸如0.234×120这样的习题的练习,最后导致作业本上很多同学0.5×150=7.5,看来以后备课一定要仔细全面。
《小数乘整数》教学反思5
今天是学生学习小数乘法的第一课时,虽然进入课堂之前我已经思考了很久,并且为此进行了精心的教学设计,但总朦朦胧胧地觉得我的目标定位有问题。就在铃响的一刹那间,一个念头一闪而过,我禁不住问了自己一个问题:今天这堂课我到底要学生学什么?是教会学生做小数乘法吗?还是通过小数乘法来提升学生的数学素养?显然,后者比前者更能体现学科的数学价值。抱定这样的.目标之后,我那“精心”的教学设计也受到了彻底的颠覆。
在课的开始,提供了一组题:
(1)125×3=375
(2)12.5×3=37.5
(3)1.25×3=3.75
(4)0.125×3=0.375
请学生比较第(2)(3)(4)题与第(1)题之间有什么联系?旨在渗透积的变化规律,并试图沟通小数乘法时与整数乘法之间的联系。然后在谈话中创设了一个生活情境:一本数学本的价格是0.52元,每位同学开学的时候都发到了4本数学本,请你算算每个人一共要多少钱?提出要求:怎样列式?为什么可以这样列?(0.52+0.52+0.52+0.520.52×4或4×0.52)这样做的目的是让学生明确:小数乘以整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
而后,我提出挑战:你能算出0.52×4或4×0.52结果是多少吗?请你来动笔算一算。学生开始尝试计算,先做好的上来板演,下面的同学如果有与黑板上的不一致,也可以上来把你的过程展示出来。一个接着一个上来,看来情况真的很复杂,列举一下:
生1:生2:生3:
在我巡视的过程中,发现主要就是这三种做法。接下来就让学生陈述理由。
生1:我们刚刚学过的小数加减法就是相同数位对齐,我就把4和0对齐,然后按照整数乘法的法则计算。
师:那积里面怎么会有一个小数点呢?
生1:我把0.52看成了52,扩大了100倍,所以积要缩小100倍,这样才能保证积的大小不变。
生2:我把0.52元扩大100倍后成了52分,52分×4=208分,再改写成用元作单位,就要缩小100倍,得到2.08元。
话音刚落。一生马上补充:她的单位名称错了,前两道的单位名称应该是分,不是元。其他同学根据学生的补充也发现了问题,对于她的发言,同学们露出了信任的神情。
生3:(大概是听了前面的同学说得振振有辞,显得很紧张,发言时含糊不清,极不肯定。)
我想描述一下自己当时的心理状态:生1的口才很好,*时对数学总有自己的见解,想要驳倒他还真不容易;生2的问题好解决;生3的想法最符合意思,可偏偏又讲不清楚,真是不凑巧啊!我开始着急了,觉得要收不回来了,怎么办?我积极地寻找对策,先点评了生2的做法,肯定其想法,然后我就指着生1和生3的做法说,他们现在两个人的做法都不一样,你准备支持哪一方的做法呢?请说出你的理由来。学生思考了片刻,陆陆续续开始举手发表自己的见解。在经过一系列的辩论之后,学生开始明确,其实大家的想法都是一致的,都是把小数乘法转化成了整数乘法,既然按照整数乘法计算,就要遵守整数乘法的法则,4自然要和2对齐。课堂上生1带着他的部队开始主动向生3部队靠拢,我也长长地舒了一口气。
第三层次,我延续情境:刚才我们已经算出每个人需要2.08元钱,那你能算一算我们班50个人一共需要多少钱吗?其实今天的败笔也在此,这一层次的练习应该将班级人数拟定为51人,这样的话更有利于今天的小数乘法学习,50最终还是归纳为一位数,不能很好地暴露问题,因此在今后的练习设计中要注意问题的全面性与合理性。
今天的课堂也给了我很多的思考:根据“新基础教育”的思想,当课堂上我们把问题“放”下去之后,面对“收”时真有点不知所措,这里有很多的因素困扰着我们:该怎么“收”?收到什么样的度?资源怎样有效地为课堂教学所用?思来想去,还是自己的专业素养不够,今后需要不断提高
《小数乘整数》教学反思6
本课的教学目标:在具体情境中探索并初步掌握小数乘整数的计算方法,会用竖式进行计算。能在探索计算方法的过程中,进一步体会数学知识的内在联系。培养初步的抽象、概括以及合情推理的能力,感受数学探索活动的乐趣。本课的重难点是:探索并学会小数乘整数的计算。本课通过创设情境,提出数学问题,列出算式。因为学生第一次接触小数乘法,让学生在解决实际问题的过程中掌握小数乘整数的计算方法,学生课前预习时发现有大部分学生都会算小数乘法,知道当成整数计算,然后点上小数点,但对于为什么要这么算,竖式的写法还很模糊。
小数位数的变化是本课的难点,在已经掌握了小数乘整数的算理之后,我安排了练习,一个是推算小数的位数,二是判断小数的位数,在判断小数的位数后又选择了两题让学生计算,认识到并不是积的小数的位数和因数的小数位数都是一样的。在当堂训练的反馈情况下我发现,学生对于小数乘法的对位和小数的加减法的对位有混淆,因此如果课堂中进行一些加减法计算的对比题目可能会避免类似的错误发生。在整节课在不断地产生疑问、进行探索过程中,自然地发现积的小数位数与因数小数位数的关系。教学重点放在对算理和算法的自主探索。
本节课也是在整数乘以整数计算方法的基础上,通过小组讨论交流,让学生明白计算小数乘以整数,是把小数转化成整数计算的,让学生共同总结出小数乘法的计算法则,同时培养学生合作探究的能力。
《小数乘整数》教学反思7
这是学生第一次接触小数乘法,教材安排了复习积变化的规律。通过例1,让学生在解决实际问题的过程中掌握小数乘整数的计算方法,之后安排了一些练习巩固。所以,我从以下几个方面作安排
1.突出积变化的规律
在教材中积变化的规律是复习,在教学中却将它当新知,引导学生发现规律,体验发现的乐趣。充分理解一个因数不变,另一个因数乘以(除以)多少,积就会乘以(除以)相同的数这样一个变化规律,引导学生直接运用这个规律计算出1.5×5,同时运用小数乘整数的意义进行验证,感受规律的正确性。
2.突出竖式的书写格式
有了前面对算理的理解,当遇到用竖式计算0.72×5时,学生不会感到困难,但要他们说出为什么,一些孩子还是不能理解,所以抓住小数点为什么不对齐来引导学生思考,推导出应根据整数乘法的计算方法计算,最后还有将积缩小相应的倍数。
3.突出小数位数变化
小数位数的变化是本节课的一个难点,因此安排了两个练习,一个是推算小数的位数,另一个是判断小数的位数,通过用两道练习来让学生认识到并不是积的小数位数和因数的小数位数都是一样的。
在课的结尾还安排了头脑风暴,填写()×()=3.6,让学生体会积的小数位数和因数的小数位数之间的关系,扩散学生思维,发挥学生的主观能动性,去主动思考,激励探究。
4.突出口算
教材中并没有安排小数乘整数的口算,而在实际学习中,口算由于数目比较小,计算结果可以比较快速地反馈,易于检验学生计算的正确与否,同时可以帮助学生理清计算小数乘整数的计算思路,所以在计算中增加了口算练习,让学生主动说出自己的想法,同时用小数乘整数的意义检验方法的正确性。
在本节课的学习中,还有一些做得不足的地方
学生开始对学习充满兴趣,积极地思考,运用发现发现的规律去解决问题,能正确计算小数乘整数,而让我困惑的是,在前面的学习过程中都很流畅,顺利的引导学生进行知识的迁移和扩展,学生掌握情况也良好,但并没有化的去让学生参与到课堂,并没有意识去倡导小组合作学习,没有让学生在质疑,讨论,交流中发现问题,分析问题,再去解决问题,真正去经历探究的过程,所以到后面的教学过程中,学生略显疲态,所以这节课让我意识到数学教学活动必须是学生学,师生合作探究,发现的过程。
所以,在以后的教学中,必须以学生为主体,教师为主导,活动为主线的教学模式,让学生参与到课堂,自主探究,合作交流,再质疑的过程,才能真正实现高效的课堂。
《小数乘整数》教学反思8
我上了《小数乘整数》这节课。课一开始我出示书中的情景图让学生仔细观察,再说说从图中你获得了哪些信息。目的是想通过生活情境的引入调动学生的学习兴趣,从而渗透数学来源于生活,应用于生活。为下面学生自主探究计算方法提供条件。
本节课是小数和整数相乘的第一课时,主要目标就是让学生掌握小数和整数相乘的方法并熟练运用之解决一些实际问题。学生的知识准备是整数和整数相乘的方法及小数的意义.教材安排了例1,通过例1,让学生在解决实际问题的过程中掌握小数乘整数的计算方法,之后安排了一些练习巩固。而在实际的学情中,有大部分学生都会算小数乘法,知道当成整数计算,然后点上小数点,但对于为什么要这么算,竖式的写法还很模糊这一现象,我想如果按照教材的编排进行,这样的问题没有挑战性,学生不会感兴趣,于是从以下几个方面安排:
1、尊重学生已有知识,让学生根据经验计算小数乘整数,并且想办法验证自己的计算是正确的来理解算理。通过课前了解学生,我发现大部分学生已会计算,因此,在教学例1时,让学生理解了小数乘整数的意义后,直接问学生:这是一道小数乘整数的题目,你会计算吗?那结果是多少呢?你是怎样算出来的?把这几个问题一下子抛给学生,学生非常活跃,很快就口算出了0.8×3=2.4。
2、突出竖式的书写格式
有了前面对算理的理解,当遇到用竖式计算3.85×59时,部分学生已不再感到困难,但也有不少同学受小数加减法的影响,还是把小数点对齐了。出现了这两种截然不同的写法后,我马上组织学生开展讨论:你们各自说说自己这样列竖式的理由是什么?你们认为有道理吗?哪一种写法符合我们刚才的计算方法?通过这样的讨论和比较,学生很快就明白了竖式的书写格式。
3、突出小数的位数的变化
小数位数的变化是本节课的一个难点,因此我为这个安排了两个练习,一个是推算小数的位数,二是判断小数的位数,在判断小数的位数后选择了两题让学生计算,认识到并不是积的小数的位数和因数的小数位数都是一样的。
在课的结尾还安排得了智慧屋,填写( )×( )=4.8,让学生体会积的小数位数和因数的小数位数之间的关系,学生想了很多,但时间关系,没有能发现所填算式之间的联系。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,这节课学生是真正课堂的主人。但计算课不是一味的算,要明白算理”需要“悟”。这方面做得不够好,如用不同的方法来说明自己的计算的有道理,如 0.8元×3就是8角×3,8角×3=24角,就是2.4元;或 0.8是8个0.1,8个0.1×3=24个0.1,24个0.1就是2.4,所以0.8×3=2.4;这样所有的学生都知道计算小数乘整数可以看成整数乘整数来计算,而且理解了算理,知道了为什么可以这样算从感性的认识上升到了理性的高度。因此,在注重计算方法的掌握,计算技能的提高的同时,更要强调对算理的理解和感悟。
《小数乘整数》教学反思9
今天是学生学习小数乘法的第一课时,让学生理解小数的"意义与整数相同学生很容易理解,而怎样确定积的小数位数。学生能不能很好理解呢?进入课堂之前我已经思考了很久,并且为此进行了精心的教学设计。
在课的开始,出示一个乘法算式:18×3问:18×3表示什么?生:3个18相加的和是多少?或18的3倍是多少?接着出示例题提出问题:要求:夏天买3千克西瓜要多少元?怎样列式?0.8+0.8+0.8或0.8×3那谁能说说0.8×3表示什么?生(3个0.8相加的和)这样做的目的是让学生明确:小数乘以整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
而后,我提出挑战:你能算出0.8×3的结果是多少吗?先让学生说自己的想法并交流:生1:把0.8扩大10倍当做8,用8乘3得24要想使积不变,积要缩小10倍。生2:把0.8元转换成角计算。在学生充分讨论的基础上,板书出竖式:提出先用加法竖式算,在用乘法算。这样做不仅使学生感受到用乘法计算不仅简单外,更重要的是让学生感受到小数乘法的积与加法结果之间的联系。加法和是一位小数,0.8×3的积是一位小数。接着又出示:2.35×30.9×4两个算式要求先用加法计算,在用乘法计算。让学生更进一步感受加法和是一位小数,0.8×3的积是一位小数。最后学生观察得出积的小数位数与因数的小数之间的关系。既:因数有几位小数积也有几位小数。
这节课学生是真正课堂的主人。是“知识意义的主动建构者”计算课不是一味的算,要明白算理”需要“悟”。因此,在注重计算方法的掌握,计算技能的提高的同时,更强调对算理的理解和感悟。摒弃一切“形式化”说理,经历独立尝试、思维交流、反思评价、再次体验四个层次,层层深入,理解感悟算理。这样的计算课才生动有趣。
《小数乘整数》教学反思10
今天是学生学习小数乘法的第一课时,虽然进入课堂之前我已经思考了很久,并且为此进行了精心的教学设计,但总朦朦胧胧地觉得我的目标定位有问题。就在铃响的一刹那间,一个念头一闪而过,我禁不住问了自己一个问题:今天这堂课我到底要学生学什么?是教会学生做小数乘法吗?还是通过小数乘法来提升学生的数学素养?显然,后者比前者更能体现学科的数学价值。抱定这样的目标之后,我那“精心”的教学设计也受到了彻底的颠覆。
在课的开始,提供了一组题:
(1) 125×3=375
(2) 12.5×3=37.5
(3) 1.25×3=3.75
(4) 0.125×3=0.375
请学生比较第(2)(3)(4)题与第(1)题之间有什么联系?旨在渗透积的变化规律,并试图沟通小数乘法时与整数乘法之间的联系。然后在谈话中创设了一个生活情境:一本数学本的价格是0.52元,每位同学开学的时候都发到了4本数学本,请你算算每个人一共要多少钱?提出要求:怎样列式?为什么可以这样列?(0.52+0.52+0.52+0.52 0.52×4 或 4×0.52)这样做的目的是让学生明确:小数乘以整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
而后,我提出挑战:你能算出0.52×4 或 4×0.52结果是多少吗?请你来动笔算一算。学生开始尝试计算,先做好的上来板演,下面的同学如果有与黑板上的不一致,也可以上来把你的过程展示出来。一个接着一个上来,看来情况真的很复杂,列举一下:
生1: 生2: 生3:
在我巡视的过程中,发现主要就是这三种做法。接下来就让学生陈述理由。
生1:我们刚刚学过的小数加减法就是相同数位对齐,我就把4和0对齐,然后按照整数乘法的法则计算。
师:那积里面怎么会有一个小数点呢?
生1:我把0. 5 2看成了52,扩大了100倍,所以积要缩小100倍,这样才能保证积的大小不变。
生2:我把0. 5 2元扩大100倍后成了52分,52分×4=208分,再改写成用元作单位,就要缩小100倍,得到2.08元。
话音刚落。一生马上补充:她的单位名称错了,前两道的单位名称应该是分,不是元。其他同学根据学生的补充也发现了问题,对于她的发言,同学们露出了信任的神情。
生3:(大概是听了前面的同学说得振振有辞,显得很紧张,发言时含糊不清,极不肯定。)
我想描述一下自己当时的心理状态:生1的口才很好,*时对数学总有自己的见解,想要驳倒他还真不容易;生2的问题好解决;生3的想法最符合意思,可偏偏又讲不清楚,真是不凑巧啊!我开始着急了,觉得要收不回来了,怎么办?我积极地寻找对策,先点评了生2的做法,肯定其想法,然后我就指着生1和生3的做法说,他们现在两个人的做法都不一样,你准备支持哪一方的做法呢?请说出你的理由来。学生思考了片刻,陆陆续续开始举手发表自己的见解。在经过一系列的辩论之后,学生开始明确,其实大家的想法都是一致的,都是把小数乘法转化成了整数乘法,既然按照整数乘法计算,就要遵守整数乘法的法则,4自然要和2对齐。课堂上生1带着他的部队开始主动向生3部队靠拢,我也长长地舒了一口气。
第三层次,我延续情境:刚才我们已经算出每个人需要2.08元钱,那你能算一算我们班50个人一共需要多少钱吗?其实今天的败笔也在此,这一层次的练习应该将班级人数拟定为51人,这样的话更有利于今天的小数乘法学习,50最终还是归纳为一位数,不能很好地暴露问题,因此在今后的练习设计中要注意问题的全面性与合理性。
今天的课堂也给了我很多的思考:根据“新基础教育”的思想,当课堂上我们把问题“放”下去之后,面对“收”时真有点不知所措,这里有很多的因素困扰着我们:该怎么“收”?收到什么样的度?资源怎样有效地为课堂教学所用?思来想去,还是自己的专业素养不够,今后需要不断提高
《分数除以整数》教学反思10篇(扩展5)
——分数乘整数教学反思10篇
分数乘整数教学反思1
一、引导自主探索,了解分数与整数相乘的意义。
1、导入新课时,引导学生涂色表示3个米,目的是让学生认识到求3个米可以用加法计算,也可以用乘法计算,再借助所列的加法算式初步理解分数与整数相乘的意义,并为引导学生探索分数与整数相乘的计算方法进行了知识结构上的铺垫。
2、通过交流与讨论,引导学生主动联系已有的知识经验进行分析、归纳和类推,进一步发展学生合情推理能力,体验探索学习的`乐趣。
二、加强过程体验,体会过程约分比结果约分更简便。
在解决例1的第(2)题时,我在处理算法多样化与算法优化时设计了88×8/11=?的练习,让学生用两种方法计算,加强过程体验,学生通过亲身体验后,体会到过程约分比结果约分更简便且不易错,形成一种内在需求,优化算法。
存在不足:
本课算理强调还不够,特别是练一练第1题,在学生独立完成后,我在组织交流时不够充分,只交流了学生的计算方法和结果,忽视了学生是如何涂出4个3/16的,后来我发现学生涂得方法很多,其实通过学生涂色写算式,可以沟通分数乘法和分数加法间的联系,进一步体会分数与整数相乘的意义,体会“求几个几分之几相加的和”可以用乘法计算的算理,我没有很好地把握教材这一练习设计的意图,没有敏锐地把握教学资源,很好地巩固算理。
分数乘整数教学反思2
一、引导自主探索,了解分数与整数相乘的意义。
1、导入新课时,引导学生涂色表示3个米,目的是让学生认识到求3个米可以用加法计算,也可以用乘法计算,再借助所列的加法算式初步理解分数与整数相乘的意义,并为引导学生探索分数与整数相乘的计算方法进行了知识结构上的铺垫。
2、通过交流与讨论,引导学生主动联系已有的知识经验进行分析、归纳和类推,进一步发展学生合情推理能力,体验探索学习的乐趣。
二、加强过程体验,体会过程约分比结果约分更简便。
在解决例1的第(2)题时,我在处理算法多样化与算法优化时设计了88×8/11=?的练习,让学生用两种方法计算,加强过程体验,学生通过亲身体验后,体会到过程约分比结果约分更简便且不易错,形成一种内在需求,优化算法。
存在不足:
本课算理强调还不够,特别是练一练第1题,在学生独立完成后,我在组织交流时不够充分,只交流了学生的计算方法和结果,忽视了学生是如何涂出4个3/16的,后来我发现学生涂得方法很多,其实通过学生涂色写算式,可以沟通分数乘法和分数加法间的`联系,进一步体会分数与整数相乘的意义,体会“求几个几分之几相加的和”可以用乘法计算的算理,我没有很好地把握教材这一练习设计的意图,没有敏锐地把握教学资源,很好地巩固算理。
分数乘整数教学反思3
分数乘整数是“分数乘法”教学的第一课时,是学生理解分数乘法意义的起点。这部分教材是在学生已学的整数乘法的意义和分数加法计算的基础上进行教学的。
在教学中,我充分利用学生已有的知识经验,努力结合现实的问题情境,将计算学习与解决问题有机结合,放手让学生自主探究分数乘法的意义。创设学生喜欢的实际情境,让学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算。
在教学分数和整数相乘的计算法则时,我指导学生从读一读,说一说,练一练,想一想,议一议五个方面入手,例如:教学3/10×5,首先让学生明确,要求3/10×5,也就是求3/10+3/10﹢3/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是35,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与35/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练7/10×5,然后进行集体交流,看一看能不能在相乘之前的那一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。
总之,本节课我能尽量调动学生的多种感官,改变以例题、示范、讲解为主的教学方式,改变以记忆法则、机械训练为主的.学习方式,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中来。
分数乘整数教学反思4
一、利用已有知识引导学生实现正迁移。
《分数乘整数》是分数乘法单元的第一课时,本课主要让学生通过自主探索,了解分数与整数相乘的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法。而分数与整数相乘的意义与整数相乘的意义相同,这节课在引入课题时,葛文娟老师设计了下面的两道习题:(1)做一朵绸花要30厘米绸带,小丽做3朵这样的绸花,一共用多少厘米绸带?(2)做一朵绸花要0.3米绸带,小红做3朵这样的绸花,一共用多少米绸带?通过让学生列式并追问为什么都用乘法计算,激活学生已有的对整数乘法意义的认识。然后再通过改题呈现例1:做一朵绸花要 米绸带,小芳做3朵这样的绸花,一共用几分之几米绸带?学生顺理成章地列出了例1的乘法算式,通过我追问这题为什么也用乘法计算?学生自然地将整数乘法的意义迁移到分数乘整数的意义中,实现了知识的正迁移。
二、尊重学生的“数学现实”,加强算法的探究。
在学习本课之前,其实已经有许多学生大概知道了分数乘整数的计算方法,但对于为什么要这样算就不清楚了。如果再按照一般的教学程序(呈现问题——探讨研究——得出结论)进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时 ×3的算法时,小葛老师问:你知道怎么乘吗,你认为整数3与分数的什么相乘呢?重点让学生明白为什么要这样乘。抓住这一质疑点,提出:“为什么只把分子与整数相乘,分母不变”接下来的教学就引导学生带着“为什么”去探索。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。
二、实现教学的个性化,发展学生的思维。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,葛老师放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果。由此我深深地体会到,包括教师在内的任何人,都不能要求学生按照我们成
分数乘整数教学反思5
《分数与整数相乘》是在学生掌握整数乘法、理解分数的意义和基本性质,以及同分母分数加法的基础上进行教学的,这是学生首次接触分数乘法。本节课所要教学的内容,虽然对于部分学生来说也许并不陌生,估计有学生可能已经会计算分数与整数相乘的算式。但这节课的学习对于他们来说并不多余,因为很多学生可能凭借经验只知道怎么算,不知道为什么这样算。尤其是对于分数和整数相乘时,为什么直接将分子与整数相乘的积作分子,而分母不变,学生不一定明确。因此,这节课不能仅仅满足学生会算,更重要的是要让学生理解分数与整数相乘的含义,关注学生理解分数与整数相乘的算理,理解和掌握为什么可以这样算?这样做的理由是什么?要让学生不仅知其然,更重要的是知其所以然。
本节课的教学,教者紧紧围绕:理解意义――明确算理――巩固提高――形成技能,这几个方面来进行教学的。虽然课堂教学还算顺利,但通过本节课的教学,也反映出了一些不足。下面就这节课的教学谈谈一些教后感想。
1.充分利用教材资源,挖掘算法和算理
计算教学的课注重的是讲明算理,掌握算法,一般对于学生来说,是比较单调和枯燥的,为了避免单纯的机械计算,我创设了学生做绸花的实际情境,将计算教学与解决问题有机结合。学生通过观察涂色的方格图,列出算式,从而有利于理解分数乘法的意义。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的简便运算,又可以启发学生用加法算出×3的结果。但在教学中,我对一米绸带的这幅图没有充分地利用好,我只是在导入时让学生说了说,怎样在图中表示3个米,其实在这里,应该依据图形结合,借助图形来说明算理,最后教师再归纳到分数乘整数的意义角度,让学生理解分数乘法的意义与整数乘法的意义是相同的,就是求几个相同分数的和。
2.连续追问,深入理解算理
在计算教学中,往往有很多教师只关注教会学生如何算,对为什么可以这样算缺乏足够的重视。因此,造成由于算理不清而导致的只会机械算,不会灵活运用的状况。因此,在这部分的教学中,我通过连续追问,让学生深入理解算理,让学生明白分数乘整数为什么分母不变,分子与整数相乘作分子的道理。这样做能够很好的突出重点,突破难点,让学生知其然,知其所以然。
3.关注细节,注重数学的严谨
在教学先约分再计算的算法时,教者改编了教材,设计了一道比较大的整数与分数相乘的题目,对比之下简单与复杂一目了然,起到了很好的效果。但是在展示的学生计算过程中,出现了约分格式不规范的情况,有些同学在约分时,把约好的数写在原来数的右边,我忘了提醒学生要把约好的数写在原来数的上方,假如教师注重一下学生书写习惯的培养,这节课将更完善。
分数乘整数教学反思6
分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课堂的开始环节,我对这些内容进行了一定的复习,再进入分数乘整数的教学。
分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知画、涂图形的过程。因此,在后面计算方法的得出就水到渠成,比较容易了。再者,对“分数乘整数表示的意义”也有机的渗透,为后面的知识打好铺垫。
一堂课上下来,由于学生对内容比较容易接受,课堂上有了空余时间。学生对算理的理解比较清晰,但还存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还不愿意采用。这一环节还应讲深讲透。学生可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的道理理解得不够清楚。学习分数乘整数,学生在计算时肯定会遇到先约分后乘还是先乘后约分的问题。如果仅仅是为得到一个正确的结果,那么无论前者,还是后者,都无关紧要,只要不出差错,最后都能得到正确结果。显然,我们还需要学生养成良好的计算习惯,较高的计算速度和计算正确率!那么我们就必须让学生明白到底哪种思路更合理,更有助于自己的后续学习。作为分数乘法的第一节课——分数乘整数,形成先约分后计算的良好计算习惯,对于提高学生计算的正确率和计算速度,有着很重要的作用。在教学分数乘法在过程中约分时,我给学生练习的题目是: ×5,并且列出两种做法让学生进行比较。但我觉得这道题并不能体现在计算过程中先约分的优越性。应该将题目改得稍复杂些,变成“13× 5/26”,并且和同学们一起比赛谁做得快。如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要约分”这一要点。
分数乘整数教学反思7
在教学分数乘整数之前,班里已经有不少学生知道了分数乘整数的计算方法。如果按照一般的教学程序进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去学习的兴趣。于是在教学时,我提出:“为什么结果是9/10?为什么要把分子与整数相乘?”接下来的教学就引导学生带着“为什么”去学习。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,我放手让学生用自己思维方式进行多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过在老师给的练习纸上涂色来得到结果;有的学生讲清了为什么将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了结果。
存在的一些问题。
让学生体会先约分比较简单时,出现了些问题。在做完例题第二个问题之后,依然有不少学生依然觉得先计算好,于是我就出示了四道题,其中最后一题数据较大,可以很好的引导学生得出正确的结论。但我现在觉得,如果在例题教学完之后就直接完成那个8/11×99,这样就更加直接了,学生立刻就能体会到先约分的好处了,那么再做其它需要进行约分的题目就方便了。
分数乘整数教学反思8
分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课堂的开始环节,我对这些内容进行了一定的复习,再进入分数乘整数的教学。
分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知画、涂图形的过程。因此,在后面计算方法的得出就水到渠成,比较容易了。再者,对“分数乘整数表示的意义”也有机的渗透,为后面的知识打好铺垫。
一堂课上下来,由于学生对内容比较容易接受,课堂上有了空余时间。学生对算理的理解比较清晰,但还存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还不愿意采用。这一环节还应讲深讲透。学生可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的道理理解得不够清楚。学习分数乘整数,学生在计算时肯定会遇到先约分后乘还是先乘后约分的问题。如果仅仅是为得到一个正确的结果,那么无论前者,还是后者,都无关紧要,只要不出差错,最后都能得到正确结果。显然,我们还需要学生养成良好的计算习惯,较高的.计算速度和计算正确率!那么我们就必须让学生明白到底哪种思路更合理,更有助于自己的后续学习。
作为分数乘法的第一节课——分数乘整数,形成先约分后计算的良好计算习惯,对于提高学生计算的正确率和计算速度,有着很重要的作用。在教学分数乘法在过程中约分时,我给学生练习的题目是:×5,并且列出两种做法让学生进行比较。但我觉得这道题并不能体现在计算过程中先约分的优越性。应该将题目改得稍复杂些,变成“13×5/26”,并且和同学们一起比赛谁做得快。如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要约分”这一要点。
分数乘整数教学反思9
分数乘法是在前面学生掌握了整数乘法、分数加减法、分数的意义和性质等知识的基础上进行教学的。
成功之处:
1、明晰分数乘法的意义。分数乘法包含两种情况:一种是分数乘整数,另一种是分数乘分数。在教学分数乘整数的意义中又分为两种情况:一是分数乘整数;二是整数乘分数。虽然它们的计算方法相同,但是表示的意义却不相同。学生非常容易在此处出现意义上的模糊。例如:2/3×4表示4个2/3是多少,而4×2/3表示4的2/3是多少。教学分数乘分数的意义时,学生出错较少,能够清晰的表示出分数乘分数的意义。
2、明确分数乘法的计算方法。在教学中,对于分数乘整数的计算方法要让学生明确分数的分子与整数相乘的积作分子,分母不变;而对于分数乘分数的计算方法要让学生明确分子相乘的积作分子,分母相乘的积作分母。在计算中先约分,再计算,会使计算变得简便。
不足之处:
1、学生在计算分数乘整数时,还是有个别同学把整数和分子约分计算,还有的出现先计算,再约分,容易出现约分后的分数不是最简分数。
2、在计算小数乘分数时,学生容易出现小数与分母约分后得整数的现象。
3、在简便方法计算时,学生容易出现应用乘法分配律进行计算的错误。特别是形如2/9—2/9×7/16这样的题目,学生往往不知道是应该应用乘法分配律来进行计算。
再教设计:
1、强调分数乘整数的计算方法,特别是整数必须要与分母约分。
2、强化练习形如2/9—2/9×7/16这样的题目,避免学生在此题目上出错。
分数乘整数教学反思10
《分数乘法》这一单元教学后的总体感受是:再简单的知识对学生来说也还是难的,主要原因是学生没有静心读题,按要求完成题目。就算是简单的计算,学生的错误也很多,不是题目抄错就是把分数加法算成分数乘法,分数乘法的计算在通分。所以我觉得可以采用如下做法:
(1)每节课的内容不易过多,不能贪多,贪多嚼不烂,学生不易一下全掌握。要分的稍微细致一些,以便学生理解掌握,也有利于知识的扩展与深化;
(2)分数乘法中:求一个数的几分之几是本册中重点,所有数与代数教学内容都是围绕着这一中心展开的。在教学中要重点对待,要求学生能根据题意画出线段图;
(3)对于教复杂的求一个数的几分之几的解决问题,在教学中要强化分率与数量的一一对应关系,让学生用画图的方式强化理解一个分数的几分之几用乘法计算,帮助学生理解"一个数的几分之几"与"一个数占另一个数"的几分之几的不同。
(4)通过对比训练区分带单位的分数和不带单位的分数计算。如比30千克多3/4是多少和比30千克多3/4千克是多少。
《分数除以整数》教学反思10篇(扩展6)
——分数除以整数教学设计10篇
分数除以整数教学设计1
教学目标:
1、在教师的鼓励引导下,学生积极地调动已有的知识经验,主动探求整数除以分数的计算方法。
2、通过师生的分析与交流,学生能较快地理解整数除以分数的算理,尝试自己归纳计算法则,初步掌握整数除以分数的计算法则,能正确地进行有关的分数除法计算,并解决生活中一些简单问题。
3、结合具体情境学生进一步体会估算在生活中的广泛应用,增强数学应用意识,感受分数除法与生活的密切联系。
教学准备:
多媒体课件、小黑板。
教学过程:
从生活中引入计算也可以如此有趣!
1、 初步感悟: 知道今天是什么日子吗?(生齐声:中秋节!)对,中秋节!在这样特殊的日子里,能和六1班的同学一起学习一定是段令人难忘的经历。据我所知,昨天和今天来自南京市各个区的多位数学老师到咱们学校借班上课,我只是其中的一个。请大家猜一猜,这两天共有多少老师来上课?
(学生议论纷纷;师:多了,少了,差不多了)
这样吧,老师提供一条信息:我来自秦淮区第一中心小学,众多老师中只有我一人是咱们区的老师,占这次上课教师人数的。这下能知道共有多少位老师到你们学校上课吗? (学生们迅速回答出有14位老师。)
2、 创设情境:前面提到中秋节,这可是我们*人很重要的一个传统节日,你知道中秋节有哪些风俗?(生:吃月饼;晚上合家吃团圆饭;赏月;吃石榴)其实现在生活条件这么好,大家并不在意晚上那顿丰盛的晚餐,每逢佳节倍思亲,是浓浓的亲情牵挂着人们的心,对吗?那首歌唱得多好呀:常回家看看,回家看看这不,陈宇的爸爸也匆匆往家赶请看屏幕。
出示例题:陈宇的爸爸在郊区工作,中秋节要回家与亲人团聚,他从单位骑摩托车到家要1小时,骑了18千米时发现用了小时,爸爸每小时行多少千米?
反思与探索
学生们是简单而纯洁的,他们总是睁大一双明亮的眼睛去观察身边的一切,用一颗真诚无暇的心作出判断和选择:过于理性、抽象、过于繁难或简单、脱离生活的数学课都会令其产生畏惧、厌烦的心理。虽然他们已经习惯于面对经过人为加工的纯数学问题,习惯于把自己熟悉的方法或公式复制到模型中就能解决问题。但常此以往,必然会降低学生从实际生活中收集、组合信息形成数学问题的能力,更可怕的是他们会逐渐拉开与数学的距离。其实数学和生活的关系是这样的密切,关注学生的生活,了解他们的学习基础和生活经验,创设贴近生活的情境,激发探究的欲望,枯燥的计算也能变得如此有趣!学生从中感受到的不仅是生动活泼的教学气氛,还有教师对他们的一份尊重与信任!
良好的开端是成功的一半。课开头设计的猜一猜环节一下子就激起了学生的兴趣。在学生七嘴八舌之后,教师却并不急于揭示答案,而是不紧不慢地提供一条信息,我一人,占这次上课教师人数的,这样的设计是建立在学生已有的知识基础上的,学生可以用整数方法解答,同时这一个也让学生在解决问题的过程中初步感悟分数除法的算理,为下面进一步学习分数除法埋下伏笔。而利用中秋节巧妙引入例题,既合情合理又自然有趣,原来数学就在自己的身边!学生的探究就从这里开始了
※ 在经历中体验这样的探究很有意思!
1、 捕捉信息:看了题目,你从中得到了哪些信息?有什么发现?
2、 引导估算:(在师生合作完成线段图后)出示完整的线段图
提问:这个线段图你们能看懂吗?能看图,估计一下1小时行多少千米?
怎么能看出来?说出你的想法。
1小时行?千米
小时行?千米
小时行18千米
(思考片刻后有生回答:从图中能看出,全长是18千米的三倍多一点,估计爸爸1小时大约行五、六十千米。)
3、 探求算法: 这只是估计,究竟每小时行多少千米?你打算怎么计算?用什么方法?选择你喜欢的方法具体算一算,算过后可以和小组中其他同学交流一下。(学生尝试用不同的方法解答,教师巡视。)
4、 交流分析:
1、学生代表汇报结果,有以下几种算法:
a、18310 = 60(千米) 先求1份即小时行的,再求10份;
b、180.3 = 60(千米) 把小时化成小数0.3小时;
c、18(103)= 60(千米)先求总长是已经行的路程的几倍;
d、18=18=60(千米)
利用数量关系速度=路程时间,直接乘除数的倒数。
2、让学生充分阐释前几种算法的算理。
3、教师重点引导方法d的证明与理解。
指出:同学们阐述了用整数、小数、分数乘法解答的理由,非常不错。
而这是一道分数除法算式, 18 =18=60(千米)
你是又根据什么来列式的? (板书:速度=路程时间)
与昨天学习的知识相比,有什么不同?整数除以分数(板书课题)
追问:你怎么想到用这种方法计算的?这样做的理由是什么?为什么可以转化成乘法来做?
A利用线段图说明算理:
学生先看图说说自己的理解。(从图上看, 1小时是小时的三倍多一些,1小时行路程的也是18千米的三倍多一些,具体说是倍。)接着出示:线段图(屏显:三个18千米闪动。)
1小时行?千米
小时行?千米
18千米 18千米 18千米
B用其他方法验证算理:
谁能用其他方法验证?用方法a、18310 和方法c、18(103)说明。
师随即板书思路18310=1810=18=60(千米)
18(103) = 18=60(千米)
5、 对比说明:同学们想出不同的方法来解决同一个问题,尽管大家思考的角度不同,但有一点是相同的都是积极地把新知识转化成已经学过的知识来解决,这一点老师非常欣赏,实际上这也是在数学学习中解决问题的一个重要思路。
那么在这些计算方法中,你觉得哪一种算法比较好?,谁能证明自己的方法更简便,说出其它算法的不简便?(学生回答时教师必须注意设置矛盾)
6、 归纳算法:想一想,整数除以分数在计算时转化成什么样的计算?你们能归纳一下吗?
反思与探索
在学习数的运算的过程中,我们的课堂除了要为学生营造一种
生动活泼的教学气氛外,更重要的是应充分尊重学生的思想、情感、意志和行为方式,使学生形成探究创新的心理愿望和性格特征。让他们可以在自由的时空里主动地探索,大胆地发现,自信地表达,快乐地运用!
掌握整数除以分数的算法是这节课的重点,但计算方法的得出决不应是教师塞给学生的,学生对算理的认识也不应是机械的,一切必须建立在放手让学生经历自主探索的过程上。会计算并不难,能理解为什么要这么算才是难点。教师充分尊重每个学生的选择,重视每个学生的表达,爸爸1小时行?千米学生面对这个具体的问题选择了不同的算法,他们有各自的理解和解释。教师用心倾听,及时板书,积极鼓励,适时引导:你们用不同的方法得到了同一个答案,都是积极地把新知识转化成已经学过的知识来解决,这一点老师非常欣赏!究竟每种解法代表什么思路,哪种方法更合适?18 =18=60(千米)又有其他解法不具备的哪些优点? 学生在探索实际问题的过程中,经历估计、求解、比较、分析、交流、验证、归纳几个环节,从而心服口服地接受了分数除法计算方法的正确性与合理性。
在应用中提升我们喜欢做这样的练习!
(在完成两组基本练习题之后,教师出示了下面的一组题,学生表现出浓厚的兴趣,积极思考,踊跃回答。)
你能用分数除法的知识解决下面的问题吗(先估一估,再算一算。)
(1)妈妈想为中秋节的晚餐添一道菜螃蟹,她在农贸市场选中的一种螃蟹,用90元可以买千克,妈妈带了120元,够不够买1千克?
(学生们估算后又通过计算得出120元不够买1千克。但很快就有学生说:老师,妈妈可以只买120元的螃蟹呀;还有学生说:妈妈可以还价说不定就够买1千克呢!)
(2)为迎接20xx年十运会,张伯伯所在的工艺品厂赶制一批纪念品,张伯伯用小时做了20件,想想他1小时能做完30件吗?
(3)国庆长假期间陈晨要去看望爷爷奶奶,一家三口开汽车从家
出发,小时行驶了50千米,已知陈晨家到爷爷家有100千
米的距离,他们1小时能到达吗?
(有学生这么估算:1小时的就是1小时的一大半时间行了50千米,剩下的时间肯定行不完另一个50千米的。接着有人反驳:如果剩下的时候里他们加速,也许1小时就可以到达爷爷家。又有人补充:那可要注意安全呀!)
反思与探索
学习数学,不能仅仅停留在掌握知识的层面上,必须学会思考和应用。我们的数学课要着力培养学生的应用意识。让学生能认识到现实生活中蕴涵着大量的数学信息,面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。 在拓展练习中提升对知识的认识,主动寻求知识的应用领域,才能开辟更为广阔的空间!所以看着学生们主动而开心地用他们所学的知识轻松去解决身边的问题,感觉真的很欣慰。
分数除以整数教学设计2
教学目标:
通过自主探究、合作交流,理解整数除以分数的计算方法。
能正确计算整数除以分数,并能解决简单的数学问题。
学生在学习活动中能进行观察、抽象、猜想、验证等数学活动,获得良好的学习情感。
教学过程:
一、引入课题。
1.同学你,喜欢动物吗这节课我们就通过数学来了解几种动物的情况。古代有一种动物被称作人们的邮递员,知道它是谁吗鸽子每小时可飞多少千米呢
2.有这样一组信息:
出示:一只鸽子小时飞行12千米。1小时行多少千米
你会用线段图表示条件吗
求鸽子1小时飞行多少千米,算式怎么列
这是整数除以分数(板书课题)
二、探究新知。
1、12÷怎样计算呢你能否根据线段图发现不同的解法呢
学生可能有以下三种方法:
① 12÷=12÷0.2
这是转化成整数除以小数进行计算。
② 12×5
为什么乘5能在图中解释一下吗
③ 12÷=60
2、12÷的结果是多少你是怎么想的
学生可能会有:
①12÷和12×5都是求鸽子1小时飞行的路程,应该相等。
②12÷等于乘的倒数。
提问:你怎么想到的
从一个例子推想出来的结论,是否适用于所有的例子呢这时可称之为猜想。想证明猜想是正确的,你认为应该怎么办
3、出示下面两题,请学生解答并说出思考过程。
1.蜜蜂
2.猫
这两题的计算过程符合刚才的猜想吗能否说明猜想适用于所有整数除以分数的情况呢
4、出示:
一只蝴蝶小时可飞行( )千米,1小时可飞行多少千米
你想知道四分之几小时飞行的千米数为什么
补充小时可飞行24千米。
算式怎么列怎样计算呢先独立思考,然后小组讨论。
学生可能有:
24×,24×3÷4,24××4,24÷3+24,24÷0.75
如果24×是正确的,结果应是相同的,验证一下。
这些算式之间有没有内在的联系呢能否转化成24×呢
教师引导完成:
5、猜想正确吗用不同的事例来证明猜想是非常了不起的办法,老师告诉你们,猜想是对的。在中学的学习中,同学们还会学习如何证明猜想。
(若有化成除以小数的,提问:两种计算方法,哪种更好)
计算整数除以分数,哪种方法最方便
三、巩固练习
①4÷2/3=4×( ) 2÷1/5=2×( )
②p35.练一练1
③计算8÷2/3 10÷15/16
四、解决问题
苍蝇小时可飞4千米
蝙蝠小时可飞4千米
游戏 a÷2/3÷3/4
机动:
榨油机2/5小时榨油360千克,1小时榨油多少千克 ?
有3升西瓜汁,倒入能装1/5升的杯子里,可以倒几杯 ?
分数除以整数教学设计3
教学目标:
1、使学生理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。
2、使学生在探索整数除以分数、分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
3、培养学生迁移、概括的能力。
教学重点:
掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算。
教学难点:
理解分数除法的意义,体会数学知识之间的内在联系。
教学准备:
展台。
教学过程:
一、创设情境,激趣导入。
谈话:同学们,你们喜欢布艺手工劳动吗,会做什么呀?看我们布艺小组同学做的书信袋,既环保又实用,多么有创意。
展台出示信息窗2的第一幅图:兴趣小组的同学用2米布做书信袋。一个小书信袋需要1/5米,一个大书信袋需要2/5米。 设计意图:本节课以发生在学生身边的生活事例“布衣兴趣活动”为素材,创设了布衣兴趣小组“做书信袋和小裙子”这一情境。
二、自主探索,获取新知。
1、说说你了解到的信息,能提出什么问题?学生找出信息,提出问题。
设计意图:教学时,教师充分利用信息窗,引导学生理清图中所包含的各种信息,让学生思考由这些信息,你能提出什么问题?这样从学生的身边发生的事件作为起点创设问题情境,极大地激发学生的求知欲,促使学生积极主动地参与学习。
2、红点问题一:2米布可以做多少个小书信袋?引导学生自己观察。
师:要求2米布可以做多少个小书信袋,就是求2米里面有多少个1/5米。怎样列算式?
师:这个算式表示的意义就是:2里面有几个1/5。
设计意图:注重给学生提供积极思维,自主探索的空间,有利于培养学生的创新精神和实践能力。
3、整数除以分数的计算方法。
小组讨论,如何计算呢?引导学生用线段图帮助理解。师展示分析过程。“1”里面有5个1/5,2里面就有(2×5)个。也就是10个1/5。也就是2÷1/5=2×5=10(个)。所以结果等于10。
师:那么,5和1/5有什么关系呢?
设计意图:让学生独立解决并画图理解算理,再在小组里共同分析、讨论,解释计算方法。由于学习是开放性的,学生自由探索知识的形成过程,可能会出现多种推导的方法,这时老师可补充肯定各种不同的推导方法,重点借助直观图,利用学生的知识基础,交流讲解,最后引导学生发现计算方法,这一环节,尊重每一个学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识与技能解决问题,体现了“人人学有价值的数学”这一教学理念。
4、红点问题二:2米布能做几个大书信袋?小组讨论交流,得出结果。 2÷2/5=2×5/2=5(个)
从而我们也可以得出:2除以2/5也就是2乘2/5的倒数。
5、绿点问题。
让学生独立解决,集体交流算式的意义和算法。
小组讨论,归纳总结:一个数除以分数,等于这个数乘分数的倒数。
设计意图:这一步骤是分数除以分数的意义和计算方法的教学,可放手让学生独立解决,最后小组讨论,归纳整数除以分数算式的意义和算法。由于前两个例题的教学,学生很容易得出分数除以分数等于分数乘后一个分数的倒数。知识的获得是在学生已有知识的基础上,通过旧知识的学习感悟得到的,这样教学有利于学生迁移,类推能力的培养。
三、自主练习。
1、自主练习第1题。
练习时,要培养学生认真仔细的学习习惯。教师可适当补充类似的练习,以逐步提高学生的计算水*。
2、自主练习第2题。
让学生独立做在练习本上,然后集体订正。练习时,要让学生解答完第1小题后,讨论数量关系,在明确“燃烧总量除以时间等于每小时的燃烧量”的基础上,再来解答第2小题。这样便于学生通过练习,全面巩固知识。
四、全课小结。
1、今天我们学习了什么新知识?
2、一个数除以分数的计算法则是什么?
3、计算一个数除以分数应注意什么?
分数除以整数教学设计4
学习目标:
1.初步理解分数乘法与除法之间的联系
2.在探究中发现,理解分数除以整数的计算方法
教学重点:
理解分数除法的意义,掌握分数除以整数的计算方法
教学难点:
掌握分数除以整数的算理
教学设计:
一.创设情景导入
前几天老师在商场买了3包饼干,每包重100克,你们能提出一些问题吗?…3包饼干一共重多少克?100?3=300(克)根据它改编成2道整数除法算式及问题300÷3=100(克)300÷100=3(包)
小结:除法就是已知两个因数的积与其中一个因数,求另一个因数的运算
二.引入新课
如果把整数改成分数,上面的题又该怎样计算?100×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(包)
通过对比,它们都是已知两个因数的积与其中一个因数,求另一个因数,分数除法的意义与整数除法相同,都是乘法的逆运算。
改写两道除法算式:12×1/2 15×1/3
三.出示学习目标:
1.初步理解分数乘法与除法之间的联系
2.在探究中发现,理解分数除以整数的计算方法
四.自主学习,合作探究
现在老师手中有4/5升的果汁,现在要把这杯果汁*均分成2份,每份是多少升?画一画,算一算学生展示计算成果:4/5÷2=4÷2/5=2/5(升)4/5÷2=4/5×1/2=2/5(升)
通过比较算式,你能发现什么规律?
分数除以整数(0除外),可以用分子除以这个整数,分母不变。也可以乘以这个数的倒数。
如果把果汁*分成3份,又该怎样计算?让学生通过比较发现:第二种方法简单通用。
五.质疑再探
你还有什么不明白的地方吗?共同探讨六.课堂检测
练习:用你发现的规律计算下面各题。 4/5÷3=
2/9÷2=
1/3÷4=
小结:通过这节课的学习,你有什么收获?分数除以整数的计算方法是怎样的?
分数除以整数教学设计5
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重难点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教学过程:
一、复习
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3×××6
二、新授
1、教学例1
(1)出示插图及乘法应用题,学生列式计算:100×3=300(克)
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
A、3盒水果糖重300克,每盒有多重?300÷3=100(克)
B、300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
×3=(千克)÷3=(千克)÷=3(盒)
(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
2、巩固分数除法意义的练习:P28“做一做”
3、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的*均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的*均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
(4)如果把这张纸的*均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、练习
÷3÷20÷5÷6
四、总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
板书设计:
分数除以整数
甲数÷乙数(0除外)=甲数×乙数的倒数
(1)300÷3==100(2)÷3=×==
分数除以一个数(0除外)等于分数乘这个数的倒数。
分数除以整数教学设计6
分数乘分数教案
教学目标:
知识与技能:理解分数乘分数的意义,掌握分数乘分数的计算法则。
过程与方法:经历解决问题和计算的过程,体验归纳推理的学习方法。
情感态度与价值观:感受数学与生活之间的联系,激发学生学习数学的兴趣,养成勤于思考的良好习惯。
教学重点:
掌握分数乘分数的计算法则。
突破方法:
引导学生分析,解决实际问题,组织学生合作探究,讨论归纳计算法则。
教学难点:
推导算理,总结法则。
教法与学法:
教法:情境教学
学法:小组合作,学习交流。
教学过程:
一、情境引入:
1、小明请小强到家里做客,请小强吃西瓜,先切了一半留给自己的父母,两人吃的各占了西瓜一半的一半,问小明吃了整个西瓜的几分之几?
师:该怎么列式
前面我们学习的是整数与分数与分数相乘,这题都是分数乘分数,你能写出这样的算式吗?
设计意图:创设情境,激发学生求知欲望。
2、观察这些算式,认为哪一些算式算起来会容易些?
二、探索算法:
(一)几分之一乘几分之一
1、请学生选择几道几分之一乘几分之一乘法算式,尝试计算。
2、汇报计算情况,提出计算方法。
3、举例说明或验证计算方法及结果。
4、小组内交流验证计算方法及结果。
5、组际交流。
6、小结几分之一和几分之一相乘的计算方法:分子相乘的积作积的分子,分母相乘的积作积的分母。
(二)一般分数相乘
1、小组合作探究:
(1)猜想一般分数相乘的计算方法。
(2)请举例验证。
(3)准备汇报。
2、组际交流
3、总结分数乘分数的计算法则。分数乘分数:分子相乘的积作积分子,分母相乘的积作的分母。
4、沟通所有分数乘法的计算方法。以前还学过哪些关于分数的乘法?他们有什么共同点?
1、学生独立写出几个算式。汇总到黑板上。
2、学生观察得出:几分之一和几分之一相乘。
3、举例说明或验证计算方法及结果。
4、小组交流个体学习情况
5、组际交流可能出现的方法:
(1)把分数化成小数计算
(2)根据分数乘法的意义
6、学生按要求活动。
7、组际交流:学生可能出现的情况
(1)可以看作是——
(2)画图:把长方形的纸先用阴影表示出,再表示阴影部分的,然后打开看一看得到的阴影是整个长方形的几分之几。
(3)化成小数计算。(能化成小数的)
三、教师辅导
1、教师进行个别辅导,并了解学生的计算及验证情况。
2、教师指导和参与讨论。
四、反馈提高,巩固计算
出示例4,读题。
师:怎样列式?依据什么列式?
由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。
让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。
课堂总结:今天我们学习了什么?分数乘分数怎样计算?
学生独立完成“做一做”。
附:教学设计说明
《分数乘分数》一课是河北省九年义务教育教材小学数学第十一册第二单元的内容,是在学习了分数整数、整数乘分数,理解了分数乘法的意义后进行学习的。分数乘法在掌握了法则以后,计算并不复杂,因此在本节课中我们力图体现“让学生自己提出、验证计算方法,培养探究问题能力,体现算法多样化”的总体思路。
一、充分开放教学过程,促进学生主动参与
整节课设计为三个阶段,每个阶段都提供了学生充分参与的机会。引入阶段,在情景的支持下让学生自己提出并确定学习、研究的材料;展开阶段,分两个层次让学生提出“分数乘分数”的计算方法,并通过独立思考、合作研究来展示、证明自己的计算方法,使研究过程体现开放与自主,努力营造个性化的学习方式,以促进各个层次学生的交流与发展。
二、充分展示知识的发生、发展与联系,使学生经历学习过程
《分数乘分数》一课,从情景入手,把较复杂的“分数乘分数”的计算方法,设计成用学生自己创造的方法来展示和验证,有利于学生更好地获得和理解计算方法。课堂的“展开”阶段,从解决“几分之一与几分之一相乘”到“两个一般分数相乘”,力图体现由浅入深、由易到难的探究过程。使学生在“探究算法——操作验证——交流评价——法则统整”等的一系列活动中经历“分数乘分数”计算法则的形成过程,感受知识间的内在联系,同时渗透数学研究的思想方法,培养学生探索问题的能力。
三、以数学知识为载体,体现《课程标准》精神,促进学生探索
本节课的设计力图以“分数乘分数”这一数学知识为载体,通过学生主动参与、发现问题、解决问题的探究过程,使学生的数学认知结构建立在自己的实践经验和主动建构之上,从而转变学生的学习方式,体现课程改革的精神。教学大纲上明确指出:“小学数学教学要使学生既长知识又长智慧,要遵循学生的认识规律,重视学生获取知识的思维过程。”通过学生自己动手研究,推导“分数乘分数”的计算方法,并进行展示交流。呈现多样化的算法,能较好地使学生感受到学习的成功和研究的乐趣,即使学生在理解掌握方法的现时提高解决问题的能力,又利于学生形成良好的数学情感与价值观。
分数除以整数教学设计7
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
++=++=
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试
同学之间交流想法:++==3××3=
×3这个算式表示什么?为什么可以这样计算?
教师板书:++=×3=
二、自主探索
(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
1.读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1:++===(块)
方法2:×3=++====(块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书:++=×3
(三)为什么可以用乘法计算?
加法表示3个相加,因为加数相同,写成乘法更简便.
(四)×3表示什么?怎样计算?
表示3个的和是多少?
++====,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+++=()×()
+++++++=()×()
2.只列式不计算:3个是多少?5个是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4×6×21×4×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是*方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修千米,4天修多少千米?
2.一条路,每天修全路的,4天修全路的几分之几?
六、课后作业
(一)的3倍是多少?的10倍是多少?
(二)一个正方形的边长是米,它的周长是多少米?
(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:++===(块)
用乘法算:×3=++====(块)
答:3人一共吃了块.
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
教学设计点评
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
分数除以整数教学设计8
教学目标:
1、使学生理解一个数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。
2、使学生在探索整数除以分数、分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
3、培养学生迁移、概括的能力。
教学重点:
掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算。
教学难点:
理解分数除法的意义,体会数学知识之间的内在联系。
教学准备:
展台。
教学过程:
一、创设情境,激趣导入。
谈话:同学们,你们喜欢布艺手工劳动吗,会做什么呀?看我们布艺小组同学做的书信袋,既环保又实用,多么有创意。
展台出示信息窗2的第一幅图:兴趣小组的同学用2米布做书信袋。一个小书信袋需要1/5米,一个大书信袋需要2/5米。 【设计意图:本节课以发生在学生身边的生活事例“布衣兴趣活动”为素材,创设了布衣兴趣小组“做书信袋和小裙子”这一情境。】
二、自主探索,获取新知。
1、说说你了解到的信息,能提出什么问题?学生找出信息,提出问题。
【设计意图:教学时,教师充分利用信息窗,引导学生理清图中所包含的各种信息,让学生思考由这些信息,你能提出什么问题?这样从学生的身边发生的事件作为起点创设问题情境,极大地激发学生的求知欲,促使学生积极主动地参与学习。】
2、红点问题一:2米布可以做多少个小书信袋?引导学生自己观察。
师:要求2米布可以做多少个小书信袋,就是求2米里面有多少个1/5米。怎样列算式?
师:这个算式表示的意义就是:2里面有几个1/5。
【设计意图:注重给学生提供积极思维,自主探索的空间,有利于培养学生的创新精神和实践能力。】
3、整数除以分数的计算方法。
小组讨论,如何计算呢?引导学生用线段图帮助理解。师展示分析过程。“1”里面有5个1/5,2里面就有(2×5)个。也就是10个1/5。也就是2÷1/5=2×5=10(个)。所以结果等于10。
师:那么,5和1/5有什么关系呢?
【设计意图:让学生独立解决并画图理解算理,再在小组里共同分析、讨论,解释计算方法。由于学习是开放性的,学生自由探索知识的形成过程,可能会出现多种推导的方法,这时老师可补充肯定各种不同的推导方法,重点借助直观图,利用学生的知识基础,交流讲解,最后引导学生发现计算方法,这一环节,尊重每一个学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的方式表达自己的想法,用不同的知识与技能解决问题,体现了“人人学有价值的数学”这一教学理念。】
4、红点问题二:2米布能做几个大书信袋?小组讨论交流,得出结果。 2÷2/5=2×5/2=5(个)
从而我们也可以得出:2除以2/5也就是2乘2/5的倒数。
5、绿点问题。
让学生独立解决,集体交流算式的意义和算法。
小组讨论,归纳总结:一个数除以分数,等于这个数乘分数的倒数。
【设计意图:这一步骤是分数除以分数的意义和计算方法的教学,可放手让学生独立解决,最后小组讨论,归纳整数除以分数算式的意义和算法。由于前两个例题的教学,学生很容易得出分数除以分数等于分数乘后一个分数的倒数。知识的获得是在学生已有知识的基础上,通过旧知识的学习感悟得到的,这样教学有利于学生迁移,类推能力的培养。】
三、自主练习。
1、自主练习第1题。
练习时,要培养学生认真仔细的学习习惯。教师可适当补充类似的练习,以逐步提高学生的计算水*。
2、自主练习第2题。
让学生独立做在练习本上,然后集体订正。练习时,要让学生解答完第1小题后,讨论数量关系,在明确“燃烧总量除以时间等于每小时的燃烧量”的基础上,再来解答第2小题。这样便于学生通过练习,全面巩固知识。
四、全课小结。
1、今天我们学习了什么新知识?
2、一个数除以分数的计算法则是什么?
3、计算一个数除以分数应注意什么?
分数除以整数教学设计9
【学情分析】
六年级学生是在掌握了整数除法的意义、分数乘法的意义,计算及其应用基础上来学习分数除法的。高年级学生喜欢通过动手来解决相关问题,而不是老师简单的灌输。分数除法算理的探索与理解是教学的一个难点,根据小学生的思维特点采用手脑并用、数形结合的策略加以突破更能激发学生学习的乐趣。
【教材解读】
例1以折纸活动为载体,利用数形结合的方法帮助学生理解分数除以整数的算理。教材分两个层次编排,先解决分数的分子能被整数整除的特殊情况;再引出分子不能被整数整除的情况。教材体现了让学生经历由特殊到一般的探索过程,进而理解把一个书*均分成几份,求其中的一份,也就是求这个数的几分之一输多少,渗透转化的数学思想。
【教学内容】
教科书第30页,做一做,34页练习七1-3题.【
教学目标】
1.通过观察实物图,理解分数除法的意义。
2.理解分数除以整数的计算法则的推导过程,会正确的进行分数除以整数计算。 3.培养学生归纳概括的能力。
【教学重点】
理解并掌握分数除以整数的计算方法。
【教学难点】
渗透转化的的数学思想,培养学生的归纳概括能力。
【教具准备】
长方形纸几张不同颜色彩笔几支幻灯片
【教学过程】
一、孕伏新知1.投影仪出示:
①找出下列各数的倒数。
20怎样很快地找到一个不为零的整数的倒数?
②根据10×3=30改写成两道除法算式。
改写的依据是什么?
2.引导学生说说整数除法的意义。
[设计意图:充分利用学生已有知识,以旧引新,为学习新知做好铺垫。]
二、动手操作,探究新知1.学生尝试列算式÷2。 2.独立思考÷2的计算方法。 3.汇报交流。
方法一:÷2=0.8÷2=0.4 454545方法二:÷2=454?25=
254.通过折一折的方法验证这道题的答案。
(1)拿出准备好的白纸,请学生利用手中的白纸尝试解决或验证答案。
(2)先将这张*均分成6份,再将其中的4份用颜色表示出来。
(3)再将涂了色的部分*均分成2份,其中的一份用另一种颜色表示出来,这其中的一份就是这张纸的几分之几。
(4)看着自己手中的纸,请学生说出正确答案。
[设计意图:让学生借助自己动手折叠的长方形或根据自己在征数除法理解的意义的基础上对分数除法意义的理解解决分数除法的问题,一方面帮助学生进一步体会分数除法的意义,另一方面让学生体会分数除法的计算方法,也为总结分数除法的计算法则做必要准备。] 5.思考:如果分数不能化成有限小数时怎么办?我们每一道分数除法分子不能将分母除尽时怎么办?
学生根据教师的质疑继续深入探究分数除以整数的计算方法。 6.根据我们的折纸过程,你发现计算÷2,就是计算它的几分之
451244几?所以我们不难发现方法三:÷2=× =
25557.出示问题:如果把这张纸的*均分成3份,每份是这张纸的几分之几?
4
5(1)生独立列出算式。
(2)选择算法。
通过观察:0.8÷3除不尽,4÷3也除不尽,应该选择方法三。
(3)学生独立计算。
(4)组织交流。
板书:÷3=×=
454514 315 8.比较三种方法,进行方法优化。
方法一和方法二都有一种局限性,方法三是运用转化的思想把分数除法转化成分数乘法来计算具有一般性,是较好的一种计算方法。
9.总结分数除以整数的计算方法。
是不是所有的整数都能当除数?为什么?小结计算方法。板书:分数除以整数(0除外),等于分数乘这个整数的倒数。
[设计意图:再次给学生创设探究的空间,让学生自己想计算的方法,自己总结计算的方法,自己运用计算方法,尽量把学生推向学习的主体地位。教师仅在学生的疑惑处或计算的关键处给以提示或强调。]
三、巩固练习,夯实基础1.教材30页的“做一做”。
练习时让学生独立完成,师巡回指导。 2.教材34页“练习七”第1题。
先让学生在书上独立填空,再说说根据什么填空的。 3.教材34页“练习七”第2题。
先组织学生观察左右两题之间的关系,交流后让学生填一填。 4.教材34页“练习七”第3题。找学生上黑板完成,集体订正。
四、拓展练习,小结提升
1.一瓶饮料的容量是升,升分一瓶,能分几瓶?
生独立思考,列出算式,由题目可以得出5瓶的结论,主要思考÷=5的计算过程,拓展引出分数除以分数的计算方法。
2.今天我们通过动手折一折、算一算的方法总结出了分数除法的计算方法:分数除以一个不为零的整数,就是乘这个数的倒数。
【板书设计】
分数除以整数方法一:÷2=0.8÷2=0.4 方法二:÷2=454?255414541445=251244方法三:÷2=× =2555分数除以整数(0除外),等于分数乘这个整数的倒数。
分数除以整数教学设计10
教学目标:
1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。
2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。
教学重难点教学重点:分数除法意义的理解和分数除以整数的算法的探究。
教学难点:分数除以整数的算法的探究。
教具准备:课件,*均分成5份的长方形纸一张。
设计意图教学过程特色设计:
通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能
一、复习
复习整数除法的意义
引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
根据已知的乘法算式:5×6=30,写出相关的两个除法算式。
二、新授
(一)初步理解分数除法的意义。
1、如果将一盒重千克的水果*均分成5份,求其中一份是多少千克,该怎样计算?
学生试着列出算式。
引导观察:这几道算式之间有怎样的关系?分数除法是什么样的运算?它的意义和整数除法的意义是否相同?
2、归纳概括分数除法的意义。
(二)分数除以整数。
1、出示例1、引导学生分析并用图表示数量关系。
问:求每份是这张纸的几分之几,怎样列式?
2、列式计算。
学生折一折,算一算。
3、理清思路。
学生说思路
4、总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。
三、练习
第30页做一做
四、作业练习
教材P34第1、3、4题。
五、总结
今天我们学习了哪些内容?
板书设计:
略
《分数除以整数》教学反思10篇(扩展7)
——《小数除以整数》说课稿3篇
《小数除以整数》说课稿1
一、说教材
(一)本节内容所处的地位和作用
教学内容是在学生已经学习了整数除法的意义,计算方法,小数的意义、性质,小数加减等知识的基础上进行学习的。在生活中学生对小数除法也有初步的接触并有一定的认识。它是在整数除法意义基础上的进一步扩展,同时,也是为今后学习小数除以小数,小数四则混合运算及分数小数四则混合运算的学习打下基础。
二、说教学目标
知识与技能:能让学生初步掌握小数除以整数的计算方法,能正确地进行笔算,并能对其中的算理做出合理的解释。
过程与方法:在教师引领的基础上,学生自主探索、合作交流的过程,培养学生分析、归纳、概括等思维能力。
情感态度与价值观:体验所学知识与生活的联系,获得成功的喜悦,增强学好数学的自信心。
三、教学重难点:
根据《课程标准》要求,基础知识与基本技能是学生学数学的重点,我确定本课的教学重点是:初步理解并掌握小数除以整数的计算方法。难点是:理解商的小数点与被除数的小数点对齐的算理。
四、教学手段
课件、卡片、等
五、教学策略
(一)教学理念与设计思想:
《课标》指出:数学课里的计算课其价值不仅仅在于结果的计算,更重要的是算法的分析过程与算理的归纳。新知的构建,都是在原有知识的基础上进行的,而且是环环相扣、渐进深入。所以我在新课前设计了课前复习。
(二)教法的确定:
如何突破重难点,完成教学目标呢?根据本节教学内容的特点,这节课采用以教师引导学生为主要方式进行新课教学。利用教材情境,以生活中的事件为原型为学生提供较丰富、直观的观察材料,激发学生学习的积极性和主动性,引导学生自主研究发现,用已有知识来求解简单小数除以整数的结果,并应用解决实际问题。
(三)学习方法的指导:
学法的指导要寓于教学的始终,结合学生的认知方式与可能出现的困难,给学生的学习予以指导,根据学生学情实际,重点从以下方面指导学生学习:鼓励学生独立思考,引导学生自主探索、合作交流。学会利用已有的知识基础和生活经验探究数学问题。
六、说教学过程
(一)教学程序
整个教学按以下五个环节组织进行:复习导入,情境引领、探究新知,归纳总结,巩固运用,课堂小结
(二)教学实施策略:
1、复习引入
36÷3=54÷6=120÷6=
2、填空
0.2里面有()个十分之一
0.4里面有()个十分之一
0.7里面有()个十分之一
0.45里面有()个百分之一
1里面有()个十分之一
6里面有()个十分之一
*里面有()个十分之一
2.4里面有()个十分之一
设计意图:回忆整数除法的意义,抓住新旧知识的连接点,为小数除以整数的学习搭建认知桥梁。
2、情境导入
在这个环节中,我出示了教材中“体育锻炼”的生活情境,拉近数学知识与学生之间的距离,并使学生体会到小数与日常生活的密切联系。
1、初步理解小数除以整数的计算方法
这一环节是本节课研究的重点,当重点突破。
(1)解答上面的问题,他每天要跑多少千米?学生独立列式,让学生在具体的情境下,理解小数除以整数的意义和整数除法的意义一样。
(2)适时点拨,学生寻找解决问题的策略。在计算得数时,遇到了问题。
(3)关注新知,透彻理解。你是怎么算的?展示各种算法。通过发问引发学生的讨论,使学生理解算理。“怎样把它转化成我们学过的整数除法?”
(4)让学生用自己的语言表述计算方法。
(5)在交流中,教师让不同层次的学生畅谈自己的算法与想法,及时掌握学生不同的思维生长点和认知区别。教师充分尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,把各种不同的算法与想法展示给全班学生,让其产生思维的碰撞与冲突,为其留下思维的空间。
(6)对各种算法做初步的判断。教师与学生共同探讨一种简便的算法,直接用小数除以整数。指导学生列出的竖式22.4÷4后,老师用纸盖住被除数小数点后面的4,问学生22÷4会计算吗?学生算出后,提问这余下的2表示什么呢?20个个十分之一或者2个一,这是把盖住的纸揭去,并且把小数点后面的4写在2的后面,问学生:24又表示什么呢,学生讨论后回答:24个十分之一。教师接着问:用24个十分之一除以4,每份应该是多少呢?(每份是6个十分之一)怎样在商上面表示6个十分之一呢?(在6前面点上小数点)最后引导学生说出在竖式商的小数点和被除数的小数点是对齐的。
2、进一步理解小数除以整数的计算方法,巩固新知,请同学们自己列出算式73.8÷9=4.2
3、课堂练习6.25÷5= 2*÷4= 14.7÷7= 43.5÷15=
4、回顾小结
让学生畅谈收获,总结小数除以整数的计算方法。
总之,本课力求让学生主动参与多,以计算技能的培养为主,以正确计算为最终目标的教学方法,而是始终关注学生的发展,创设各种条件让学生参与到知识的产生、形成、发展、运用过程中,通过教师的指导,学生自主学习讨论、合作交流和探索,去发现和小数除法的算理和算法,从而使不同层次水*的学生都在原有基础上有所提高,使学生的情感、态度、学习思维能力、合作探究能力进一步得到培养和发展。
5、课后反思
由于本人是新手,对一些教育理念的认识比较浅显,课堂教学中可能存在的许多不足。例如:对课堂的整体把控、对学生引导、教师的基本技能及课堂用语凝练有待提高。同时也希望能得到各位老师的点评和指导。
6、教学中的启示与思考
通过自己的课堂教育实践活动,我觉得教师在课堂上组织、引导学生自主探究学习新知的方法很重要。如果我们精心的备好每节课,上好每节课,引领学生积极参与探究新知的学习。达到学生学会新知的目的。
《小数除以整数》说课稿2
教学内容:
教科书苏教版五年级数学上册第七单元第72~73页,例4、试一试、练一练,练十三1~3题。
教学目标:
1、引导学生联系生活情境,通过自主探究、合作交流,理解小数除以整数的计算方法。
2、能正确地进行小数除以整数的计算,并能解决简单的实际问题。
3、通过学活动,培养积极的学态度,树立学好数学的信心。
教学重点:
理解小数除以整数的计算方法,商的小数点要和被除数的小数点对齐。
教学准备:
多媒体课件。
教学过程:
一、创设情境,引入新课
1、同学们,再过几天又到双休日,老师这次看望他妈妈时准备带些苹果,到水果市场一看,一个货主的标价是:1﹒3元1斤另一个货主的标价是:5元钱4斤。
看到这里,你有什么想法?
猜猜看,哪个货主卖得便宜些?
类似这样的购物问题,既可以用小数乘法解决问题,也可以用小数除法解决问题,这节课我们就来学小数除法。
〔设计意图:提供生活中经常遇到的画面,提出有挑战性的问题,不仅激发了学生的学欲望,而且自然地引出了新课的学。〕
二、教学例题,探索算法
1、出示例4情境图和表格。
提问:从表格中,你了解了哪些信息?
单价、数量、总价这三种数量之间有什么关系?
2、谈话:你能求出妈妈买的这苹果的单价吗?
学生列式:9.6÷3
谈话:这个算式是什么数除以什么数?(学生回答后教师板书课题:小数除以整数)你能利用已有的知识和经验想办法计算吗?
学生在小组里算一算,互相交流想法和算法。
谈话:谁能说说自己的算法?
学生可能的想法:
(1)将9﹒6元换算为96角,用96角除以3得32角,32角就是3﹒2元。
(2)把9﹒6元分成9元和6角,9÷3=3(元),6÷3=2(角),3元+2角=3元2角,3元2角=3.2(元)。
谈话:同学们利用人民币的单位和单位间的进率算出了苹果的单价,其实小数本身也有计算单位,相邻单位间也有十进关系,你们能利用小数的组成和小数本身的计算单位说说这道题可以怎么算吗?(9﹒6可以分成9个一和6个十分之一,9个一除以3得3个一,6个十分之一除以3得2个十之一,3个一和2个十分之一合起来就是3.2)
谈话:弄懂算理我们就可以列竖式计算了,谁来说说坚式的写法?教师板书。
提问:先算什么?再算什么?
学生独立探索计算方法,尝试计算。
小组交流。
3、全班汇报交流。
(1)谁愿意把你们小组的方法说给大家听?
(2)我们可以用竖式计算。(板演竖式计算)
用竖式计算时,商的小数点点在哪里?为什么要把商的小数点和被除数的小数点对齐?
学生在小组讨论,说各自的理解和想法。
组织学生在班级中交流,在讨论中得出:因为9除以3得3,表示3个一,十分位上的6除以3得2,表示2个十分之一,所以商的小数点应该点在整数部分的“3”和小数部分的“2”之间,也就是要和被除数的小数点对齐。
谈话:计算时为了避免漏掉小数点,在算出商的个位上的数之后,就在商里点上小数点,再接着往下除。
4、香蕉和橘子的单价会求吗?试试看。
(1)学生尝试列竖式计算。
(2)汇报计算过程,师板演。
(3)12÷5得出商2后,组织讨论:得到余数2以后要不要继续往下除?
为什么可以在余数2后面添0再除?
添上0以后,原来的2就表示什么了?(20个十分之一)也就是把原来的数12,写成了什么样呢?(12.0,在竖式中轻轻标出)
你能继续往下除吗?
商的小数点应该点在哪里?(商的小数点要和被除数的小数点对齐)
(4)5.7÷6个位不够商1怎么办?
引导学生提出:个位不够商1时,要在商的整数部分写0,点上小数点,再继续往下除。
学生说完整的笔算过程,集体交流算法。
5、怎么才能知道我们刚才计算的是否正确呢?根据什么数量关系来验算?
用“单价×数量=总价”,验算上面的结果对不对。
6、谈话:比较这三道算式,有相同和不同的地方吗?
学生交流算法,发现都是除数是整数的小数除法。算法不同的是第一小题可以直接进行计算;第二小题是除到被除数末尾还有余数,需要在余数后面添上0继续往下除;第三小题是个位不够商1,要在商的整数部分写上0,再点上小数点,继续往下除。
〔设计意图:这三小题是学生在计算除数是整数的小数除法时常会遇到的情况,用三个算式可以分别讲清计算除数是整数的小数除法的计算方法,由一般到特殊循序渐进地掌握计算过程中的一些具体技巧,突破一个个难点,便于学生学领会。最后的综合比较,学生可以比较全面地感受到除数是整数的小数除法的计算方法,从而提高计算能力。〕
三、再次探索,理解算法
1、完成试一试
(1)用刚才的方法来解决这两道计算。
(2)学生独立计算,指名板演,集体订正。
2、总结法则。
刚才几道小数除以整数的计算过程,你觉得和什么计算非常相似?(整数除法)
又有什么区别?(对齐被除数的小数点,在商里点上小数点)
小数除以整数可以按照整数除法的计算法则去除,求出商,再对齐被除数的小数点,给商点上小数点。
3、谈话:现在你能解决刚上课时遇到的问题了吗?
出示题目,学生计算。做好后交流计算结果,发现5元钱4斤的单价要低于1.3元1斤。
四、巩固提高,熟练算法
1、完成练一练。
学生独立完成,指名说一说错在哪里,怎样订正。
2、完成练十三第1题
比较每组两题的计算,你发现了什么?
3、完成练十三第2题
学生独立完成,集体订正。
计算小数除以整数,应注意什么,你有什么想提醒大家的?
4、独立完成练十三第3题
独立完成,集体订正。
五、课堂总结
这节课我们学了什么知识,你有哪些收获,还有什么疑问,小组里议一议,再在班里交流。
〔设计意图:小数除以整数的计算,对学生来说有一定的难度,而且计算容易出错,因此在练设计中安排了针对性的训练,进一步巩固小数除以整数的计算方法,让学生在改错、计算、交流的过程中明确小数除法计算方法和整数除法之间的联系,提高计算除数是整数的小数除法的正确率。〕
教学反思:
在认识了小数,掌握了小数加、减乘法的基本算法与算理、整数的四则运算之后,学生学小数除法已经具备了一定的基础与条件。第1个例题9.6÷3我是和学生一起完成的,在讲授过程中,重点关注①:6表示什么?(6个十分之一),6个十分之一*均分成3份,每份是多少?(2个十分之一)也就是……(0.2)。②:商的小数点点在哪?(因为6个十分之一*均分成3份,每份是2个十分之一,即0.2,也就是说小数点应该点在2的前面)什么时候点?(在商2之前)。③完成笔算之后,让学生发现商的小数点要和被除数的小数点对齐。并且说一说为什么。(数位对齐)。
经过几年亲身教学计算,我明白了计算教学既要讲算法,更要在此过程中渗透算理,因为学生会计算只是表面的机械反应,而学生对算法的真正理解才是我们教学所要达到的目标,也就是对算理的理解。学生的能力正体现在此,难住学生的也正是对算理的考察。
在12÷5、5.7÷6、及试一试中的0.2÷5与3÷15,我都是让学生先自行计算,然后针对出现的难点和学生一起讨论是什么,为什么及怎样算,以及计算不同题目时的注意点。应该说,教材的安排是层层递进的,最后让学生归纳出小数除以整数应该怎样计算。通过亲身体验,学生们一起努力都能归纳出小数除法的算法:计算小数除以整数可以按照整数除法的计算方法去除,再对齐被除数的小数点,在商上点小数点。在计算中,如果个位不够商1就商0,如果有余数,就在余数后面添0继续除。
但是由于讲得太细,练一练及练十三的1-3题都没有完成。还是要提高速度、增加效益。
《小数除以整数》说课稿3
一、教材分析
教学内容:国标苏教版第九册数学72页
教学目标:
1、通过自主探究、合作交流,理解小数除以整数的计算方法。
2、能正确地进行小数除以整数的计算,并能解决简单的实际问题。
3、培养学生能较好地估算商的整数部分,为正确计算小数除以整数打好基础。
4、通过学活动,培养积极的学态度,树立学好数学的信心。
教学重点:
小数除以整数的计算法则;
教学难点:
商的小数点位置的确定。
二、教案设计
新的数学课程标准提出,教师不仅要做学生发展的促进者,也要做课程的开发者和研究者。
这节课我首先用生活中购物时还价产生的矛盾事例引入课题,一方面激发了学生对将要学的小数除法产生兴趣,而且能让学生体会到数学在生活中所发挥的作用,同时,也对学生进行了一次热爱学的思想教育。
然后,我用课件出示了例1,让学生自己搜集相关的数学信息,利用“总价÷数量=单价”的数量关系式列出算式,让学生通过自主学,小组合作,估算商的整数部分的取值范围,并且通过估算练加以巩固。“估”是算的基础,“估”不仅可以界定出结果的范围,而且还能为“算”提供必要的帮助。这里借“估”过渡,沟通了整数除法的商与小数除法的商的整数部分的联系,为接下去学生的独立思考打下了基础。
接下来,我让学生先用已经学过的数学知识,利用小组合作学的形式,探究9.6÷3的计算结果,通过学生集体的智慧,探究小数除法的计算法则,让学生自我理清“为什么商的小数点要和被除数的小数点对齐”的算理。利用单价×数量=总价进行验算,让学生明确检验的方法。再利用给竖式的商点上小数点的训练,巩固小数除法的计算法则。最后,通过辨析,进一步帮助学生理清算理。这一段的教学设计,一是为学生选准了独立思考、独立探究的切入点,让他们在不同的解题方法中形成比较,产生思考;二是通过师生的共同梳理,将以元、角作单位进行小数除法计算的思路,转化为用计数单位去思考,利用学生已有的知识,形成从“常理”到“算理”的自然过渡,实现了从特殊到一般的认知飞跃;三是通过辨析,让学生更好地理清了用竖式计算的正确方法。四是所有的知识点都是学生通过他们自己自主、合作、探究学,总结出来的,学生成了课堂教学的主宰;教师的教只是为学生起引路的作用。
最后,通过一系列的笔算练、生活实践应用题的练,(这里的生活实践应用题作为机动题,视教学时间的多少而定。)一方面为新授起巩固作用,另一方面让学生用所学知识去解决生活实践,使他们感知数学的魅力所在,明白生活中处处皆数学,数学就在我们身边。
三、教学方法设计
新的课程标准要求,在教学中要培养学生“自主合作探究”的学方法。
关于计算方法的教学,是让学生被动地接受还是让学生主动地去探究,其方法不言而喻。当学生有了一定的认知基础、生活经验和思考方法后,教师就应该做到:
(1)适度地“放”。学生有整数除法竖式计算的基础,有用元、角等知识进行估算的经验,
教师就要让学生凭借已有的知识、经验和方法去独立思考,通过合作交流、自主探究新的知识。自学能够学会的知识,使学生不但获得了能力的发展,同时也完成了认知渐进过程中的自然演变。
(2)适度地“引”。学生自主探究的过程不会一帆风顺。本节课学生在竖式计算中对小数点如何处理产生了不同的意见,就表明学生的认知水*存在着差异。这时教师及时地适度引导,让学生在探究遇到困难和阻力时得到帮助;在认识不清、误入歧途时获得指引;让尝试了成功的学生获得继续前进的目标。学生的学情绪旺盛,渴求再次获得成功的欲望强烈增强。
(3)适度地“理”。学生能不能在探究过程中自主归纳、总结,反映了学生学的目标感和学力。本节课我通过设问,让学生总结以元、角为单位进行竖式计算和利用计数单位思考竖式计算两者之间的规律,结合整数除法和小数除法的内在联系,使学生盲目无序的思考变得有序,使生活化的思维方式得以数学化,使宽泛肤浅的认识得到提炼和升华。
《分数除以整数》教学反思10篇(扩展8)
——《假分数化成整数和带分数》听课教学反思3篇
《假分数化成整数和带分数》听课教学反思1
小学阶段涉及到的分数计算中,最后结果不要求保留带分数,为了更好地培养学生的数感,帮助学生理解比1大的假分数的分数值究竟有多大,较容易地比较出假分数的大小,所以,教材在编排时引入了带分数的相关知识。学生已经掌握了真分数和假分数的意义及特征,知道了分数与除法之间的关系,能够较熟练地将分数改写成除法算式。
本节课的教学重点是让学生能够熟练地将假分数化成整数或带分数,教学关键在于利用分数与除法的关系来完成化简过程。在教学本课知识时,苏老师很注意引导学生在自主探索的基础上进行交流,在交流中掌握把假分数化成整数或带分数的方法。
教学把假分数化成整数时,老师能关键把握两点:一是让学生先独立思考把假分数化成整数的方法,再让学生交流是怎样想的。有的学生根据分数与除法的关系,用分子除以分母把假分数化成整数;也有的学生借助画图进行思考,但用这个方法的同学并不多;还有的学生根据分数的意义推想,如已知5个1/5是1,10/5里有10个1/5,10是5的2倍,所以10/5=2。教学时重点让学生在理解的基础上,学会利用分数与除法的关系直接进行转化。二是组织学生观察能化成整数的假分数,让学生对能化成整数的假分数的特点有明晰的认识。提出问题:分子不是分母的倍数的假分数可以化成怎样的数呢?于是提出可以写成整数和真分数合成的数,就是带分数。借助数轴,帮助学生理解带分数是如何生成的。然后引导学生用分子除以分母的方法进行转化,引导学生明确除得的商是带分数的整数部分,余数是带分数的分子,而分母不变。整节课环环相扣,条理清楚,练习题有层次感,效果不错。
《假分数化成整数和带分数》听课教学反思2
这是一节由我校苏谊青老师执教的课,该教师一向教学基本功扎实,要求严格,是我们学习的榜样。
这是一节计算课,难点是把假分数化成带分数时,哪个数充当整数?哪个数充当分母?哪个数充当分子?其中学生最容易搞错的就是将分子、分母掉转。在教学的过程中,教师通过说理、示范、让学生说一说等,不厌其烦地引导学生进行思考、练习。教师设计的练习量充足且类型丰富,学生在整节课的学习中,从不懂到懂都是该教师手把手的"教学成果。
教师的教学设计由浅入深、环环相扣,使我受益非浅。以下是我在本节课中最欣赏的亮点:
1、板书设计形象具体、一目了然、有启发性。
2、教师的语言精辟、简练,有一针见血的功效。
3、练习精而活,让学生耳目一新。
4、能提问不同层次的学生,可以及时了解学生对知识点的掌握情况。
总的来说,苏老师的课上得十分好,是我们教学者学习的榜样,希望通过学习她的教学方式、方法使我们的教学水*能更上一层楼,使学生喜欢每一节数学课,期待上每一节数学课。
热门文章:
- 新思想奋进新时代学习心得感受优选4篇2025-01-12
- 六稳六保学习心得体会7篇2025-01-12
- 幼儿园2023年度国庆节主题活动方案3篇2025-01-12
- 保持师德演讲稿甄选3篇2025-01-12
- 防网络诈骗学习心得体会通用范文选集5篇2025-01-12
- 在2023年全市模范机关建设工作推进会上的发言5篇2025-01-12
- 欢庆国庆节幼儿园的活动方案6篇2025-01-12
- 万名党员进党校培训班职工心得感想3篇2025-01-12
- 新任职领导表态发言稿9篇2025-01-12
- 长征精神学习心得体会13篇2025-01-12
相关文章:
