同行范文网
当前位置 首页 >范文大全 > 公文范文 >

2023年《加法交换律和乘法交换律》教学设计3篇【优秀范文】

发布时间:2023-04-23 10:40:28 来源:网友投稿

《加法交换律和乘法交换律》教学设计1  一、说教材  1、教学内容。  “加法交换律和乘法交换律”是北师大版《义务教育课程标准实验教课书》四年级上册第四单元的内容。书中把两部分内容编排在一起。在备课下面是小编为大家整理的2023年《加法交换律和乘法交换律》教学设计3篇【优秀范文】,供大家参考。

2023年《加法交换律和乘法交换律》教学设计3篇【优秀范文】

《加法交换律和乘法交换律》教学设计1

  一、说教材

  1、教学内容。

  “加法交换律和乘法交换律”是北师大版《义务教育课程标准实验教课书》四年级上册第四单元的内容。书中把两部分内容编排在一起。在备课过程中,根据教学内容和学情我先引导学生观察发现加法交换律,然后在学生掌握加法交换律的基础上迁移过来。让孩子们大胆猜想,进而验证,得出乘法交换律。

  2、加法、乘法交换律在数学学习中的作用。

  本单元所学习的几条运算定律,不仅适用于整数的加法和乘法,也适用于有理数的加法和乘法。随着数的范围的进一步扩展,在实数甚至复数的加法和乘法中,它们仍然成立。因此,这些运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石”。而加法、乘法交换律又是这数学大厦基石中的基石。

  加法、乘法交换律的内容比较简单,学生在以前的学习过程中都有过浅显的认知基础,只是没有明确的概括,本节课的教学很大程度上是要将学生以前比较零散的感性认识经过整理、明晰后上升为理性认识,因此,学生学起来比较容易。但是用符号或字母表示加法交换律,则是学生认识上的一个难点,因为这是学生第一次接触从研究确定的数到用字母表示一般的数,比较抽象,理解起来也比较困难。再有,学习方法比学习知识更为重要。不要简单地让孩子们学习运算定律,而是重在渗透给他们去猜想、验证并得出结论的数学研究的方法。

  所以在设计本节课时我更多的想的是,如何让学生主动地去思考,去验证,经历得出结论的过程。自然地经历由用数到用字母表示的知识形成的过程,让学生在理解、感悟、体验中感受字母表示的优越性,从而为后面的其他运算定律的教学,以及正式教学“用字母表示数”打下基础。

  3、教学目标。

  有了上面的思考,我把本课的教学目标定为:

  (1)使学生经历探索加法、乘法交换律的过程,理解并掌握加法交换律。

  (2)使学生感受数学与现实生活的联系,培养学生根据具体情况,选择算法的意识与能力。

  (3)经历加法交换律逐步符号化,形式化的过程,使学生初步感受用字母表示运算定律的优越性,培养学生的符号感。

  (4)渗透给学生用“举例验证法”来验证规律存在的真实性数学学习方法。

  4、教学重点:使学生理解并掌握加法、乘法交换律。

  5、教学难点:会用个性化的符号或字母表示加法、乘法交换律。能根据加法运算定律展开猜想,并能进行举例验证。

  二、说设计意图

  设计本节课时,我一直在思考:教师怎么引导学生去探究、发现、总结规律?

  交换两个加数的位置,和不变,学生在一年级的时候就会,只是比较零散,没有系统的表达。知识点本身的学习并不应“浓墨重彩”去渲染,我们的小学数学教学不仅应该关注“是什么”和“怎样做”,还应该引导学生去猜想、去探究“为什么”和“为什么这样做”,这样才能够凸显出“数学是思维的体操”这一学科特色。教师应该带领学生经历从现象到本质的探究过程,给学生一个问题模式,让学生“知道怎样思维”,让学生感悟一些数学研究的一般方法。

  因此我在设计本课教学的基本思想是:

  一是紧密联系学生的生活实际,引导学生在已有经验的基础上发现和归纳出运算定律。

  二是重视让学生在探索中经历运算定律的发现过程,大致应该经过以下几步:观察、猜测、举例、验证,得到规律。

  三是给学生提供机会经历“具体事物——学生个性化的符号表示——学会数学地表示”这一逐步符号化、形式化的过程。

  三、说教学流程

  本节课分三部分教学。

  (一) 复习引入,得出加法交换律。

  (二) 知识迁移,得出乘法交换律。

  我以为,教*算律主要让学生经历不完全归纳的过程,只注意让学生举出实例进行验证,而忽视了能否找到反例的问题。对于不完全归纳法来说,举出的正例越多,则意味着结论的可靠性越大;但若发现了一个反例,则可推翻结论。因此,我预设了“刚才老师和同学们举了这么多例子,有没有不符合这个规律的例子?”这个问题,学生通过无法找到反例,加深了对结论可靠性的认识。在这个过程中,学生不仅获得了数学结论,更重要的是学到了获得数学结论的思想方法和体悟到科学研究方法的严谨性。

  (三) 巩固练习,深入理解交换律。

  四、类比拓展

  从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论。

  猜想一:减法中,交换被减数和减数的位置差不变?

  猜想二:乘法中,交换两个因数的位置积不变?

  猜想三:除法中,交换被除数和除数的位置商不变?

  选择一个你感兴趣的,用合适的方法试着验证。使学生经历“形成猜想、举例验证”的完整、真实的过程,感悟数学研究的一般方法。

《加法交换律和乘法交换律》教学设计2

  在数学中,研究数的运算,在给出运算的定义之后,最主要的基础工作就是研究该运算的性质。在运算的各种性质中,最基本的几条性质,通常称为“运算定律”。在加法和乘法的五条运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石”。在前面的学习中,学生已经接触到了反映这五条运算定律的大量例子,特别是对于加法、乘法的交换性和结合性,学生已经有了一定的认识基础。

  成功之处:

  1、整合教材内容,便于形成完整的认知结构。在以往教学中,都是按照教材的编排程序,按部就班,首先教学加法运算定律的教学,再进行乘法运算定律的教学,最后对比加法、乘法运算定律之间的联系和区别。虽然感觉教学有条不紊,但是总感觉缺失点什么,总感觉有这样一双手在禁锢自己的思想。如何让教学更能适应新形势下课改教学的要求,以学生为本,顺应学生认识发展需求,减轻学生背诵记忆的"难度。因此在今年的教学中,我大胆改变了教材的编排程序,改变为加法、乘法交换律放在一课时进行教学,加法、乘法结合律也是如此。通过教学,有利于学生感悟知识之间的内在联系和区别,学生在理解的基础上,非常轻松的认识了加法、乘法交换律,记忆非常深刻牢固。

  2、经历“形成猜想、举例验证”的完整真实的过程,感悟数学研究的一般方法。在教学中,由故事“朝三暮四”引入,引发学生猜想,通过举例验证得出:两个加数交换位置,和不变的结论,然后又再次引发学生从结论进行猜想,让学生不仅知道从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论,也是一种非常好的获取结论的方法。通过结论引发猜想,学生很自然列举了例子进行证明,从而得出在乘法中,两个因数交换位置,积不变的结论。结论的得出顺其自然,水到渠成,真实感悟到了数学研究的一般方法。

  不足之处:

  习题的处理欠妥当。练习五1题只是要求学生将计算结果填入表中,没有让学生说说表中数的规律:可以以加号所对的那条对角线为对称轴,对应位置上的两数相等。这样在计算中可以利用这个规律,算出对角线及上半部分或下半部分,另一半可以照抄。

  再教设计:

  1、注重习题的备课,减少低效教学流程。

  2、注重对加法、乘法交换律的证明过程,可以通过集合图和点子图,让学生不仅要知其然,还要知其所以然。

《加法交换律和乘法交换律》教学设计3

  1.理解并掌握加法、乘法交换律,知道减法和除法没有交换律,能根据交换律解决简单的问题。

  2.经历观察、猜想、计算、验证、联想、归纳等数学活动过程,能有条理地、清晰地阐述自己的观点,掌握科学探究的一般方法(举倒验证)。

  课前互动。

  1.老师姓王,谁和我一样也姓王。你属什么?属鸡,小王同学属鸡,那我猜你们都是属鸡的,我猜得对不对?(有不是属鸡的,我就不能说你们属鸡)那老师猜错了。看来我问一个人,只能证明一个问题,那就是她属鸡!

  2.那我再猜猜,你们这么小,每天早上一定都有家长送你们来上学,我猜得对不对呢?我要想证明我的猜测,我可以怎么办?(什么情况下,我猜的是对的?什么情况下,我猜的是错的)

  (只要有一个不是家长送,就证明我是错的了)

  3.那我再猜一个,我猜你们*时都住在锦州。(所有人都住锦州,证明我的猜测是对的。)

  一、创设情境,激发兴趣

  1.这回换你们了,我最近喜欢上了一档亲子节目,湖南卫视的,猜猜是什么?《爸爸去哪儿》。上期,joe和kimi一起做刨冰,给我留下了深刻的印象,

  2.从图中你能获得到哪些重要的信息?(joe做了5杯,kimi做了3杯)

  数学课堂,一下子抓到了重要的数据信息,真棒!

  3.你能提出什么数学问题吗?(一共做了多少杯?)

  这个问题都会解答吗? 5+3=8

  提个更简单的问题,还记得加法算式中的各部分名称吗?

  还有不同的解决方法吗?

  4.大家有没有发现点什么?得数相等,那我能这两个式子变变形,改写成一个等式吗?

  5+3=3+5

  二、探究发现

  1.猜想

  观察这一等式,你有什么发现?

  交换两个加数的位置和不变。(教师板书这句话)

  1个算式就敢轻易下结论啊!那个只能算是一个猜想,既然是猜想,那么我们还得——

  2.验证

  怎么验证呢?(我觉得可以再举一些这样的例子。)

  怎样的例子,能否具体说说?(比如再列一些加法算式,然后交换加数的位置,看看和是不是跟原来一样。)

  3.举例

  (1)寻视发现问题:老师想给大家展示同学们在刚才举例过程中出现的两种不同的情况。

  (教师展示:1.先写出12+23和23+12,计算后,再在两个算式之间添上“=”。2.不计算,直接从左往右依次写下“12+23=23+12”。)

  比较两种举例的情况,想说些什么?

  为了验证猜想,举例可不能乱举。这样,再给你们几位一次补救的机会,迅速看看你们写出的算式,左右两边是不是真的相等。

  (2)你们举了哪些例子,又有怎样的发现?

  7+8=8+7, 200+500=500+200

  两位同学举的例子略有不同,一个全是一位数加一位数,另一个则有一位数加一位数、二位数加两位数、三位数加三位数。比较而言,你更欣赏谁?

  举的例子更全面。举例就应该这样,要考虑到方方面面。

  如果这样的话,那你们觉得下面这位同学的举例,又给了你哪些新的启迪?

  教师出示作业纸:0+8=8+0,6+21=21+6,1/9+4/9=4/9+1/9。

  因为我们不只是要说明“交换两个整数的位置和不变”,而是要说明,交换——任意两个加数的位置和不变。

  看来,举例验证猜想,还有不少的学问。现在,有了这么多例子,能得出“交换两个加数的位置和不变”这个结论了吗?

  有没有谁举例时发现了反面的例子,也就是交换两个加数位置和变了?这样看来,我们能验证刚才的猜想吗?

  4.小结

  回顾刚才的学习,除了得到这一结论外,你还有其它收获吗?

  5.再次猜想、联想

  从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论。比如(教师指读刚才的结论,加法的“加”字予以重音),“在加法中,交换两个加数的位置和不变。”那么,在——

  减法中,交换两个数的位置,差会不会也不变呢?

  乘法中,交换两个乘数的位置积会不会也不变?

  除法中,交换两个数的位置商会不变吗?

  如果把加法交换律中“两个加数”换成“三个加数”、“四个加数”或更多个加数,不知道和还会不会不变?

  现在,同学们又有了不少新的猜想。这些猜想对吗?又该如何去验证呢?选择你最感兴趣的一个,用合适的方法试着进行验证。

  6.学生举例验证

  (学生选择猜想,举例验证。教师参与,适当时给予必要的指导。然后全班交流。)

  哪些同学选择了“猜想一”,又是怎样验证的?

  8-6=2,但6-8却不够减;3/5-1/5=2/5,但1/5-3/5却不够减。所以我认为,减法中交换两个数的位置差会变的,也就是减法中没有交换律。

  们刚才所提到的符合猜想的例子,数学上我们就称作“正例”,至于不符合猜想的例子,数学上我们就称作――反例。

  只要能举出一个反例,那我们就能肯定猜想是错误的。

  关于其它几个猜想,你们又有怎样的发现?汇报

  三、创新应用

  1.简算

  (1)乘法交换律

  10 ×5 = ()×() ()×△=()×☆

  C ×()= F ×() 25 ×18 ×4 =25 ×()×()

  (2)加法交换律。

  想不到Joe和kimi的刨冰给咱们带来了这么多思考。当时做刨冰的可不只他们两个,还有多多姐姐呢!看!

  5+3+5 怎么算得这么快?你是怎样进行计算的?

  2.验算,你能用今天学到的知识解释下现计算的道理吗?

  78*455=

  2.村长有任务下达了!

  (教师出示:20-8-6○20-6-8 ;60÷2÷3○60÷3÷2)

  观察这两组算式,你发现什么变化了吗?

  第一组算式中,两个减数交换了位置,第二组算式中,两个除数也交换了位置。

  交换两个减数或除数,结果又会怎样?由此,你是否又可以形成新的猜想?利用本课所掌握的方法,你能通过进一步的举例验证猜想并得出结论吗?这些结论和我们今天得出的结论有冲突吗,又该如何去认识?


《加法交换律和乘法交换律》教学设计3篇扩展阅读


《加法交换律和乘法交换律》教学设计3篇(扩展1)

——《加法交换律》教学设计3篇

《加法交换律》教学设计1

  教学内容:

  青岛版小学数学四年级下册第一单元信息窗三13页至14页的`内容。

  教学目标:

  1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。

  2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

  3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。

  4.初步形成独立思考、合作交流的意识和习惯。

  教学重点:

  理解掌握加法的交换律和结合律,并会用字母表示他们。

  教学难点:

  引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。

  教学准备:

  课件、投影仪、卡片

  教学过程:

  一、拟定导学提纲,自主预习

  (一)创设情境

  1.谈话:同学们,长江,黄河就像两条长龙盘卧在*大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些?

  课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的小知识,例如上游:青藏高原黄土高原内蒙古高原中游:黄土高原下游:华北*原等小知识)最后大屏幕定格在信息窗三的情境图。

  以上展示在大家面前的就是黄河流域图。教师板书:黄河流域

  请同学们仔细观察,你能获得了哪些数学信息?

  学生观察汇报,

  生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2、黄河上游流域面积是39万*方千米,中游是34万*方千米,下游是2万*方千米;)

  教师适时板书相应的信息条件。

  2.你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。

  问题(1)黄河流域的面积是多少万*方千米?

  问题(2)黄河全长多少千米?

  (二)出示学习目标

  同学们提出了这么多有价值的问题,那么今天我们将解决那些问题呢?请看本节课的学习目标:

  1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的运算定律进行简算。

  2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

  (三)出示自学指导

  为了能够更好地解决今天的学习目标,老师给大家提供了一些指导意见,请看自学指导。

  (自学指导:请同学们认真看教科书第13—14页的信息窗3的第一个红点和小电脑的内容,重点看解决问题的过程,思考:(1)怎样解答同学们提出的问题?哪种方法简单?(2)什么是加法的结合律?怎样用字母式表示?(3)什么是加法交换律?怎样用字母式表示?

  (5分钟后,比一比谁汇报得最清楚。)

  (四)学生自学

  师:下面请同学们根据“自学指导”开始自学,比一比谁看书最认真,谁自学效果最好!(师目光巡视每一个学生,特别要关注特困生。)

  二、汇报交流,评价质疑

  (一)调查

  师:看完的同学请举手?

  (二)全班汇报

  1.问题一:黄河流域的面积是多少万*方千米?

  学生在列式解答时,可能会出现两种情况:

  (1)39+34+2和34+2+39

  (2)(39+34)+2和39+(34+2)。

  2.问题二:黄河全长多少千米?

  学生可能出的情况:

  (1)、3470+1210+790和1210+790+3470

  (2)(3470+1210)+790和3470+(1210+790)。

  今天我们要学的知识就在这两组算式中。

  (设计意图:充分运用教材情境图,引导学生获取信息,提出加法问题。在此基础上让学生列出算式。通过这两组算式学习今天的新知识,为下面学习埋下了伏笔。学生会马上把精力投入到这两个算式的研究中,激发了学生探究的兴趣。)

  3.观察、比较、发现规律

  (1)观察这些算式,你们发现了什么?

  生汇报:每组算式运算的数相同,运算的结果相同,运算的顺序不同。

  例如:

  (39+34)+2=39+(34+2)

  (3470+1210)+790=3470+(1210+790)。

  (2)是不是所有的三个数相加都符合这些规律呢?举例验证一下吧:(每个学生在练习本上写出几组这样的算式,看结果怎样)

  生汇报:

  (35+63)+15=35+(63+15)

  (325+82)+18=325+(82+18)…

  (3)把你的发现告诉大家?(将学生的举例用实物投影展示)

  (三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。)

  师指出这条规律叫做加法结合律。

  (4)你能用你喜欢的方法表示这加法结合律吗?

  学生用各种符号、字母表示这个运算定律。最终教师指出,在数学上,我们统一用a、b、c来表示三个加数,因此加法结合律可以写作(a+b)+c=a+(b+c)。学生齐读,教师板书在黑板上

  小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。

  (设计意图:本环节经历了猜测—举例—验证—得出结论的过程,无形之中培养了学生一种数学思想。)

  4.学法迁移,探索加法交换律。

  那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。

  (1)游戏:找朋友。

  在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?

  (2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗?

《加法交换律》教学设计2

  设计理念:生活经验是小学生学习数学的宝贵财富,也是他们进行数学探索的基础。教师应充分利用学生已有的生活经验,让他们在此基础上实现对数学的再创造,切实体验数学与生活的联系,经历数学知识发生、发展和形成的过程,提高学生应用数学解决实际问题的能力。

  教材分析:教材从情境引出例题,帮助学生体会运算定律的现实背景,让学生借助解决实际问题,进一步体会和认识加法交换律,使学生经历由个别到一般,由具体到抽象的认知过程,引导学生由感性认识上升到一定的理性认识。

  教学目标:探索和理解加法交换律,并能够用字母来表示加法交换律;经历探索运算定律过程,通过对实际问题的解决,进行比较和分析,发现并概括出加法交换律;在数学活动中获得成功的体验,培养学生独立思考和探究问题的意识和能力。

  教学准备:多媒体课件。

  教学过程:

  一、在情境中初步感知规律

  1.导入故事《朝三暮四》,引发学生思考。根据学生回答板书:

  3+4=7(个)4+3=7(个)3+4=4+3

  2.创设问题情景。出示主题图,引导学生观察,图中告诉了我们哪些信息?我们要解决的问题是什么?

  3.尝试解决问题。学生独立解决问题,根据学生解答板书:

  40+56=96(千米)56+40=96(千米)40+56=56+40

  引发猜想:是否任意两数相加,交换位置,和都不变?

  二、在举例中验证规律

  1.交流:有了猜想,我们还得验证。你打算怎么验证?

  2.学生举例验证,教师巡视指导。

  三、在比较中概括规律

  1.同学们仔细观察列举出的等式,说一说你发现了什么?你能用自己的话说出你发现的规律,并给它命名吗?(两个加数交换位置,和不变。这叫加法交换律。)

  2.让学生用自己喜欢的方式表示加法交换律。用语言表达加法交换律比较麻烦,怎样表示既简单又清楚呢?试一试,用你喜欢的符号、字母或图形表示两个加数。

  四、在类比中拓展规律

  1.引导学生由加法类比到减法、乘法和除法,并自觉形成关于减法、乘法和除法中是否有交换律的三个新猜想。

  2.学生选择部分猜想,举例进行研究。教师参与,适时给予指导。

  3.交流:哪一种猜想是正确的,你们是怎么举例验证得出结论的?教师板书若干例子,进而得出结论。

  4.探讨:减法和除法中有交换律吗?学生交流后,引导思考:为什么只要举一个反例就能推翻猜想?

  五、在应用中深化规律

  1.请同学们想一想,以前学过的知识中哪些地方用到过加法交换律?

  2.下面我们就来比一比,看谁学得最好。

  (1)你能在括号里填上合适的数吗?

  300+600=()+()()+55=55+420 ()+65=()+35

  (2)仔细看一看,下面的算式符合加法交换律吗?

  270+380=380+270 b+800=800+b

  (3)运用加法交换律,你能写出几个算式?写写试试吧。

  25+49+75=()+()+()

  学生写出算式以后,让学生观察这些算式,哪两个数交换了位置?在这些算式中,你认为哪一道计算起来比较简单?说说你的想法。

  六、在反思中深化理解

  通过这节课的学习,你有哪些收获?说一说自己表现最好的方面。

  (责任编辑付淑霞)

《加法交换律》教学设计3

  教学内容

  教材P28页例1,P30页练习相关习题。

  教学目标

  1、知识与技能:

  结合具体的情境,引导学生认识和理解加法交换律的含义。

  2、过程与方法:能用字母式子表示加法交换律,初步学会应用加法交换律进行一些简便运算。

  3、情感态度与价值观:

  ①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。

  ②培养学生观察,比较,抽象,概括的初步思维能力。

  教学重点

  认识和理解加法交换律的含义。

  教学难点

  引导学生抽象,概括加法交换律。

  教学用具

  多媒体课件。

  教学过程

  一、自主学习

  (一)出示自学提纲

  自学提纲(教材P28页例1,并完成自学提纲问题,将不会的问题做标注)

  1、根据例1情境图中信息列出算式。

  2、用你喜欢的方法尝试计算

  3、同桌交流自己的算法

  4、教师板书出学生的算式及答案

  40+56=96(千米) 56+40=96(千米)

  5、对比上面的两道算式,你发现了什么?用自己的话说一说。

  (二)学生自学(学生对照自学提纲,自学教材P28页例1,并完成自学提纲问题,将不会的问题做标注)

  (学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

  (三)自学检测

  1、填空

  387+425=( )+ 387 525+( )=137+ 525

  300+600=( )+( ) ( )+65=( )+35

  甲数+乙数=( )+( ) 偶数+( )=奇数+( )

  2、连线

  56+68 50+B

  B+50 68+56

  二、合作探究

  (一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解。)

  (引导学生正确地计算,鼓励学生分工合作,探索交流,教师巡回辅导,发现、收集学生存在的问题)

  (二)师生互探

  1、解答各小组自学中遇到不会的问题。

  (1)让学生提出不会的问题,并让学生解决。

  (2)教师引导学生解决学生还遗留的问题。

  (3)如何用字母表示加法交换律和结合律?

  (4)用字母表示这些运算定律有什么优点?

  2、教师有针对性地请不同做法的同学汇报自己的解题思路与方法。

  三、达标训练

  1、填空题。

  (1)360+482=( )+ 360 128+275=125+( )

  (2)( )+ 78 =78 +149 133+( )=125+133

  2、连线。

  38+175 47+B

  B+47 175+38

  3、简便计算下面各题。

  89+91+11 268+147+32

  课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

  四、堂清检测

  (一)出示检测题(1—2题必做,3题选做,4题思考题)

  1、根据加法交换律填空。

  (1)450+320=( )+ 450 65+95=95+( )

  (2)( )+ 100 =100+150 250+( )=125+( )

  2、下面的哪些算式符合加法交换律。

  (1)84 + C = B + 84

  (2)10 + 20 + 30 + 40 =10 + (20 + 30) + 40

  3、简便计算。

  81+78+19 679+132+121

  (二)堂清反馈:

  作业布置

  教材P30页习题。

  板书设计

  加法交换律

  40+56=96(千米) 56+40 =96(千米)

  a+b = b+a


《加法交换律和乘法交换律》教学设计3篇(扩展2)

——四年级《加法交换律和乘法交换律》教学设计3篇

四年级《加法交换律和乘法交换律》教学设计1

  教学目标:

  1.理解加法交换律和乘法交换律,并会用字母表示两个规律。

  2.了解加法交换律和乘法交换律的用途,发展应用意识。

  3.培养学生的观察能力、概括能力、迁移能力和语言表达能力。

  教学重点:

  理解加法交换律和乘法交换律,并会用字母表示两个规律。

  教学难点:

  理解加法交换律和乘法交换律,并会用字母表示两个规律。

  教学准备:课件。

  教学过程:

  一、激趣导入:

  请两名同学起立,让他们交换位置。抽生说说发现了什么?

  师:生活中,我们经常会遇到交换位置这种现象。那么,在我们的数学中是不是也存在这种现象呢?这节课我们就来研究这个问题。

  二、自主合作:

  ★活动一:探索加法交换律

  1.根据观察,提出猜想:

  ①教师板书2+3和3+2。

  ②学生观察2+3和3+2,说说这两个算式有什么相同点和不同点?

  ③师:任何两个数相加,和都不会变吗?(学生猜想)

  2.学生验证:(完成学案中的活动1)

  ①你能照黑板上的样子再写两组吗?

  ②观察上面的式子,你发现了什么?你能给你所发现的规律起个名字吗?

  我发现了:

  我给这个规律起的名字是:

  ③你能用自己喜欢的方式来表示你所发现的规律吗?

  3.运用加法交换律填一填。

  13+9=()+13

  76+58=()+()

  ()+()=32+21

  ()+()=()+()

  ★活动二:探索乘法交换律

  学生完成学案中的活动2。

  乘法也有交换律吗?

  我的猜想:

  举例验证:

  我的发现:

  ★加法交换律和乘法交换律有什么相同点和不同点?

  ★列举生活实例解释加法交换律和乘法交换律。感受加法交换律和乘法交换律的用途。

  1.数的分解,根据乘法口诀列式。

  2.结合本班男、女生人数计算总人数。(两种方法)

  3.学生举例。

  4.加法、乘法验算。

  三、展示交流:

  抽组对活动1和活动2进行展示,其它小组认真倾听,并作出相应的补充和评价。

  四、达标检测:

  1.运用加法交换律和乘法交换律填一填。

  5+17=()+545×19=19×()

  29+13=()+()()×()=210×30

  a+b=()+()△×□=()×()

  ()+()=()○()()○()=()×()

  2.计算下面各题,并运用加法交换律和乘法交换律进行验算。

  213+31431×23

  五、拓展延伸:减法和除法也满足交换律吗?举例试一试。

  六、全课小结。

  学生谈收获。


《加法交换律和乘法交换律》教学设计3篇(扩展3)

——加法交换律教学反思

加法交换律教学反思

  身为一名优秀的人民教师,我们的任务之一就是课堂教学,借助教学反思可以快速提升我们的教学能力,如何把教学反思做到重点突出呢?下面是小编收集整理的加法交换律教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

加法交换律教学反思1

  今天完成了加法交换律的教学,由于借班上课,上完后感觉自己前半节课发挥得不如后半节课,不过学生对交换律的理解和应用以及对交换律对减法、和加减混合的应用掌握的还是不错的。这节课,我从学生以学知识入手,引导学生发现加法交换律,理解知识就在我们身边,进而提出除了帮助我们验算外还有什么强大的功能!接下来利用加法交换律使计算简便,进而发现还可以使减法简便,加减混合简便!使交换律得以推广!

  听完课后,赵老师没来得及喝水就结合这节课进行了评析。

  赵老师首先肯定了我的素质,作为骨干教师课堂扎实,教学思路清晰!

  同时赵老师提出这节课可以从经验拓展的角度,让学生从更多的生活实例入手,从道理上理解“交换”,如8+74+2、想:原来有8本作业,先拿来74本又拿来2本,我们可以这样,先拿来2本,又拿来74本,都表示现在有的,因此8+74+2和8+2+74是相等的。再如:35-17+5,可以这样想公交车原来有35人,下去17人,上来了5人,可以这样想有35人,上来了5人,又下去了17人。这样的结果都表示现在有的因此人数是一样的。结果是相等的。

  “理”上的理解更容易让学生从根上明白算理。我在教学时,用计算的方法验证下的工夫多了一些,学生举例少了点,这样总感觉形式上稍多了点,另外“验证”更多的是验证这种方法可以,但不能在道理上理解,赵老师提出可以看看马刚老师的课例。也鼓励我们多去看看名师的课例。

  从第一次听课得到王宏主任的指导,指出“苹果”的贯穿,课堂练习的量,今天得到赵老师的指导,自己感觉收获很多,发现了自己身上的不足,从备课到上课,用了两天的时间,昨晚还熬夜制作课件到11点多,虽然累,但自己有了收获,此时感觉一切累都值得!

加法交换律教学反思2

  在数学中,研究数的运算,在给出运算的定义之后,最主要的基础工作就是研究该运算的性质。在运算的各种性质中,最基本的几条性质,通常称为“运算定律”。在加法和乘法的五条运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石”。在前面的学习中,学生已经接触到了反映这五条运算定律的大量例子,特别是对于加法、乘法的交换性和结合性,学生已经有了一定的认识基础。

  成功之处:

  1、整合教材内容,便于形成完整的认知结构。在以往教学中,都是按照教材的编排程序,按部就班,首先教学加法运算定律的教学,再进行乘法运算定律的教学,最后对比加法、乘法运算定律之间的联系和区别。虽然感觉教学有条不紊,但是总感觉缺失点什么,总感觉有这样一双手在禁锢自己的思想。如何让教学更能适应新形势下课改教学的要求,以学生为本,顺应学生认识发展需求,减轻学生背诵记忆的难度。因此在今年的教学中,我大胆改变了教材的编排程序,改变为加法、乘法交换律放在一课时进行教学,加法、乘法结合律也是如此。通过教学,有利于学生感悟知识之间的内在联系和区别,学生在理解的基础上,非常轻松的认识了加法、乘法交换律,记忆非常深刻牢固。

  2、经历“形成猜想、举例验证”的完整真实的过程,感悟数学研究的一般方法。在教学中,由故事“朝三暮四”引入,引发学生猜想,通过举例验证得出:两个加数交换位置,和不变的结论,然后又再次引发学生从结论进行猜想,让学生不仅知道从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论,也是一种非常好的获取结论的方法。通过结论引发猜想,学生很自然列举了例子进行证明,从而得出在乘法中,两个因数交换位置,积不变的结论。结论的得出顺其自然,水到渠成,真实感悟到了数学研究的一般方法。

  不足之处:

  习题的处理欠妥当。练习五1题只是要求学生将计算结果填入表中,没有让学生说说表中数的规律:可以以加号所对的那条对角线为对称轴,对应位置上的两数相等。这样在计算中可以利用这个规律,算出对角线及上半部分或下半部分,另一半可以照抄。

  再教设计:

  1、注重习题的备课,减少低效教学流程。

  2、注重对加法、乘法交换律的证明过程,可以通过集合图和点子图,让学生不仅要知其然,还要知其所以然。

加法交换律教学反思3

  本节课的时间把握的正好,学生掌握的程度也还可以,达到了本节课的教学目标。

  不足之处:课堂上,我的状态不太佳,学生也不是很活跃,基本上都是几个人在回答问题。*时班上的课堂气氛挺活跃的,但是这节课不知是怎么回事,连学习很好的孩子上黑板上演板都错了,可能是孩子们有些胆怯吧。还有就是自己评价语言太单一了,以后要在这方面多下功夫。争取让自己的课堂更生动完美。

加法交换律教学反思4

  义务教育数学课程标准指出:教师要用教材教,而不是教教材,也就是让我们教师要把握教材的编写意图,根据学生实际,创造性地使用教材。根据这一指导思想我结合本班学生善于动脑,乐于推理,勤于总结的特点,将教材例1和例2合并成一节课展开学习活动。纵观本节课有以下几个特点:

  一、学习问题的产生激发了学生的探究的欲望。

  课堂上我从口算A、B两组竞赛题入手,让学生练习计算,比速度,让学生马上意识到算B组题的速度明显比A组题快,先声夺人,让孩子感受到简便算法的优越,接着教师引导:为什么B组题算得快,这其中蕴含哪些数学知识呢?这一问题马上激起了学生探究的欲望,学习问题的产生将学生自然带入到学习状态中来,激发了学生强烈的探究欲望。

  二、情境的创设发散了学生的数学思维。

  教学新知前我让学生对课题“加法的运算定律”说说自己的理解,学生很自然地想到:我们今天要研究的是加法的一些运算规律,再由贴近学生的生活情境引入主题,让学生自由地提问,学生提出的问题多数是用加法解决的问题,不仅培养了学生发散性的思维,还能让学生提出的问题直奔主题,老师的引导做到了有放有收,从而提高了学习效率。

  三、学法的指导体现了知识建模的过程。

  数学课标指出:在数学教学过程中,教师应注重发展学生模型思想。本节课我注重“授之鱼”,更注重“授之以渔”。先是和学生一起学习了加法的结合律,总结出了四步学习法:提出问题---解决问题---举出例子----总结归纳。建立这样的模型后让学生按照这样的方法展开自学活动。本节课的教学并不是仅仅让学生掌握加法的运算定律,更重要的是要掌握解决问题的方法,培养学生观察、分析、比较、概括的能力。整节课对学生有“扶”又“放”,在教会孩子知识的同时,也教会了孩子的学习方法。这四步学习法对后续一些运算定律的学习,一些规律的推理和验证都用重要的意义。

  四、以学生为主体创造性地使用教材。

  本节课的教学内容如果按教材的编排程序去学习是体现了知识的学习由浅入深,循序渐进。但我觉得学生自学加法结合律有一定的难度,需要教师的引导才能学懂、学透,而加法交换律学生很容易通过老师的“自学提示”展开学习,所以我大胆地对教材的内容进行了调整,先领学生学习加法结合律,而加法交换律我放手让学生根据“四步学习法导学单”进行自学,学生的学习效果非常好。课堂上做到了以学定教,立足于学生的学,立足于学生的终生学习和可持续性发展。

加法交换律教学反思5

  整个教学过程同学从已有的知识经验的实际状态动身,通过质疑、猜测、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了胜利解决数学问题的喜悦或失败的情感。

  1.注重教学目标的整合化。

  根据时代的发展和要求,数学教学的价值目标取向不只仅局限于让同学获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处置好知识性目标和发展性目标*衡与和谐的整合,在知识获得的过程中促进同学发展,在发展过程中落实知识。在“交换律”这节课中,教师在目标领域中设置了过程性目标,不只和同学研究了“交换律”“是什么”,更重要的是让同学体验了数学问题的发生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注同学的学习过程,有意识地引导同学亲历“做数学”的过程。引导同学用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励同学从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了胜利的情感。

  2.注重教学内容的实际性。

  新课标里曾指出,教学时应从同学熟悉的情境和已有的知识动身进行,开展教学活动。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。

  (1)找准教学的起点。对同学学习起点的正确估计是设计适合每个同学自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律在浙教版小学数学教材中分别布置在第七册和第八册,而在过去的学习中,同学对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课教师把重点放在引导同学发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使同学的认识由感性上升到理性。

  (2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课教师首先引导同学用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导同学发生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子来说明吗?这样利用捕获到的“生活现象”引入新知,使同学对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了同学大胆探索的兴趣。

  (3)改进资料的出现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据同学的实际对教材内容进行有目的的选择、补充和调整。本节课在教学资料的"处置时,改变了把课本当作“圣经”的现象,让同学参与教学资料的提供与组织,给同学创设了一个创新和实践的学习环境,既激发了同学的学习动机和探究欲望,又使同学的身心得到了一种胜利的体验。另外在资料出现的顺序上,本节课改变了教材编排的顺序:在第七册教学加法交换律,在第八册教学乘法交换律,而是同时出现,同时研究。因为当同学在已有认知结构中提取与新知相关的有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充沛做到了尊重同学的认知规律。

加法交换律教学反思6

  在学校举行的一人一节研究课展示活动中,我执教的苏教版四上《加法交换律和结合律》这一课题,通过活动我收获颇多,现将我的反思呈现如下:

  教学的整体程序是:出示这堂课的学习目标——出示这堂课的自学要求——学生根据自学要求自学、教师巡视发现学生自学中的问题——小组汇报自学结果(优先差生)——纠正、讨论、指导自学结果——小组派代表在班级展示自学成果----师生点评------巩固练习-----知识延伸(拓展)。这样的设计,生生之间积极互动,师生之间互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。这节课我强调学生的发言要大声地说:我们小组的发现是……充分调动他们的自信心和自豪感。

  具体做法是:

  一、学生经历有效地探索过程。在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察发现——举例验证——得出结论”这一数学学习全过程。教学这两个运算律都是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。我有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。

  二、注意数学学习方法的渗透。加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了“观察发现——举例验证——得出结论”的学习过程,在此基础上,再让学生探索加法结合律,教师加以适当的引导,为学生提供足够的自主探索的时间和空间,学生将已有学习方法渗透到探索加法结合律中,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。

  三、教学中注意沟通知识间的联系。在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。在教学完加法结合律时,又出示了两道口算题9+7、34+27,让学生回忆口算过程。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。在最后的提高巩固阶段,结合练习为下节课学习加法简便计算垫下了基础。

  总的来说,这堂课取得了较好的效果。通过本课的学习,学生不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律联想到减法、乘法、除法运算中,是否也存在一定的规律呢这一想法。并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。同时,在教学过程中,我也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。总之,在学习洋思经验及实施新课改中,我会不断地反思,及时地总结,适时地改进,充分地完善自我,相互学习,取长补短,不断提高自己的教育教学水*。

加法交换律教学反思7

  本节课为《运算律》的第一课时,而在这一单元之前,学生经过了三年多时间的四则运算学习,并对这些已经有一些感性认识的基础:如在10以内的加法中,学生看着一个图可以列出两道加法算式;在万以内的加法中,通过验算方法的教学,学生已经知道调换加数的位置再加一遍,加得的结果不变。本节课通过一些实例进一步来引导学生进行概括总结。

  在教学中,我首先创设了学生熟悉的生活情境,让学生根据社会实践中的信息自由地提问。这样既培养了学生的发散性思维,以及问题意识,也符合新课程“创造性地使用教材”的理念。在教学中通过对两个算式的观察比较,唤醒学生已有的知识经验,使学生感知加法交换律,组织学生写出类似的等式,帮助学生积累感性材料,丰富学生的表象,同时鼓励学生用自己最喜欢的方法总结出加法交换律和加法结合律,学生能较快的体会出这两种运算律,使学生体会到符号的简洁性和概括性,发展学生的符号感。通过几个层次的练习,使全体同学都参与到有趣的数学学习中,体会到生活处处有数学,充分感受到学习数学的乐趣,又巩固了全课的内容,为以后教学应用运算律进行简便计算作好铺垫。

  通本节课的教学,我发现还有很多不足之处。

  一、对学生的课堂表现评价不够及时。如在教学加法交换律时,学生写出“6+2=2+6,1+9=9+1…”时,没有很好的解读学生的心理。这位学生之所以写出一位数的算式,是因为他觉得写一位数加一位数的等式非常简单,方便计算。但是作为不完全归纳法,他写出的算式有一定的局限性,没有代表性。此时如果追问学生,“是不是只有一位数加一位数才有这样的规律?”,“那你对这位同学写得有什么建议呢?”这样可以引导学生进一步思考,培养他们思维的严谨性。

  二、没有很好的辨析加法交换律和加法运算律本质特性。这样导致了学生在后面的练习中不能进行准确的辨析。可以增加加法交换律和加法交换律的对比环节,对比得出加法交换律的本质特征:加数没有变,结果没有变,运算符号也没有变,但是加数的位置发生了变化。

  总的来说,这堂课取得了较好的效果,不过同时,也发现了很多问题,这些问题有些是客观的,很多是由于本人的教学机智和教学设计还不够。

加法交换律教学反思8

  师:咱们来做个游戏,我说3+2,你们就说2+3,看谁反应快。明白吗?现在开始。

  师:5+6

  生(齐):6+5

  师:20+30

  生(齐):30+20

  师:为了让大家看得清楚,现在请一个同学上台,把我们游戏的算式用等式逐一写在黑板上。

  师:25+13

  生(齐):13+25

  师:75+25

  生(齐):25+75

  师:哪位同学上来也试一试。

  生(甲):33+44

  生(齐):44+33

  生(乙):26+25

  生(齐):25+26

  师:从刚才这位同学写的等式中,你们发现了什么?有什么规律吗?

  生(甲):两个加数交换了。

  生(乙):我发现,两个加数不但交换了位置,而且左右的结果是一样的。

  师:你们的想法很有道理,也就是说在加法中,交换两个加数的位置,结果不变。你能用比较简单的方法表示刚才发现的运算规律吗?

  生(甲):我认为用符号可以表示,两个数就用不同符号表示,比如用○和□,这个规律就可以这样表示:○+□=□+○

  生(乙):我用甲数+乙数=乙数+甲数

  师:你们能用字母尝试写一下吗?

  生(丙):a+b=b+a

  师:a、b各表示什么意思?

  生:a表示前面的加数,b表示后面的加数。

  师(板书):a+b=b+a

  师:这道等式表示了加法中的一个重要的运算规律,这个规律就是加法交换律。

  反思:

  1、通过创设游戏情境,让学生在游戏中体会加法交换律,学生在愉悦的氛围中认识规律。

  2、让学生用不同的方法表示规律,一方面可以培养学生的创新意识,另一方面让学生经历由数到符号的演变过程。最终通过交流互动生成由字母表示的加法交换律。

  3、整个过程以学生为主体,把学习主动权交给学生,使探究成为课堂的主旋律,这样富有生气的课堂教学,必定有利于学生的发展。

加法交换律教学反思9

  《加法交换律》是人教版四年级下册第三单元第一节概念课,是在学生已经掌握四则运算的基础上进行教学。本节课的教学设计有意识地让学生运用已有经验,让学生亲身经历这一规律的发现过程,同时注重学习方法的渗透,为高年级的学习打下基础。新课标指出,让学生经历有效地探索过程。教学中以学生为主体,教师为主导,激励学生动手、动脑、动口积极探究问题,促使学生积极主动地参与到“倾听故事——提出猜想——举例验证——得出结论”这一数学学习过程。现对本节课的教学设计说以下几点:

  1、创设问题情景,激发学生学习兴趣本节课以成语故事《朝三暮四》为切入点,吸引了大部分学生的注意力,自然而然激发学生学习的兴趣。同时,为学生进行教学活动创设了良好的氛围。通过教师设问:“故事讲完了,你想说些什么?”水到渠成地引出数学算式“3+4=4+3”,进而提出猜想“交换两个加数的位置,和不变?”。这样设计,让学生在快乐的氛围中主动思考,发现规律,为举例验证埋下伏笔。

  2、组内交流讨论,举例验证猜想教师引导学生思考举出怎样的例子去验证猜想?应该举多少个?意在渗透举例验证这一数学方法,同时让学生初步感知“无数”的概念。

  在小组讨论的同时,教师及时进行点拨,引导学生举出如下例子:

  1、3+6=6+3,4+5=5+4,7+8=8+7

  2、1+2=2+1,12+13=13+12,100+200=200+100,20xx+3000=3000+20003、0+5=5+0,1|4+2|4=2|4+1|4,1.02+2.03=2.03+1.02小组汇报后,让学生评价各小组举例,真切体验“举例验证要考虑到方方面面”。

  3、练习层层深入,巩固所学新知为了让学生巩固本节课所学的知识,为学生提供了充分的练习内容。让学生利用加法交换律进行填空即可,使学生即时运用掌握的知识。本节课使学生由简单应用到灵活应用的练习中,掌握本节课的基础知识,同时又培养了数学思想。本节课的教学设计比较创新,打破了传统教学观察得结论的方法,而故事引入,提出猜想,举例验证,和学校提倡的“主体多元,合作探究”教学模式相吻合。同时,也适合本学段学生的发展特点、认知规律。当然,在实际的教学过程中,也存在很多的缺点和不足,如下:

  1、在引导学生思考举怎样的例子来验证猜想这一环节,处理的不够恰当。不是学生不会思考,是教师的设问指向性不够明确。比如,可更改为“我们是不是可以再举一些加法算式的例子来验证呢?”,让学生明白举例是指举加法算式,然后交换他们的位置,看和是否相等。

  2、在让学生体验“无穷”思想时,没有达到预设的教学目的。课堂教学时,当学生举了大量的例子之后,教师询问是否可以验证我们的猜想时,有的学生还是坚持认为不可以,一定要举无数个例子才行。此时,可自然衔接,引入用字母a和b可表示任意数。这样,我想比教师生硬地解释,刻意地让学生用自己喜欢的方式来表示加法交换律,效果要好得多。

  3、在引出加法交换律时,要明确强调这一规律中,变的是加数的位置,不变的是他们的和。让学生反复地说,a和b可以代表哪些数?

  4、在课堂练习时,可引导学生回顾我们在哪里用到过加法交换律。可利用课本31页第2题,将新学与旧知巧妙地结合。另外,要将每一个习题的设计意图,充分地挖掘出来。

  总的来说,这堂课取得了预期的教学效果。学生不但掌握了加法交换律,更重要的是学会了数学方法,为下节加法结合律以及乘法运算规律打下很好的基础。

加法交换律教学反思10

  课程标准提出“让学生经历有效地探索过程”。教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察猜想——举例验证——得出结论”这一数学学习全过程。基于以上理念本节课的教学我注意从教材出发,理解教材所要达到的教学目标,创造性地使用教材,调整了教材的知识结构,真正做到用教材教,而不是教教材。充分发挥出教师的主导性、学生的主体性。本节课打破传统的课堂教学结构,注重学生观察、比较和分析能力的培养,让学生从已有的生活经验出发,根据已有经验自主探索知识的形成过程。课堂上关注学生的个人体验,满足的学习需求,强化学生的积极情感,使学生不断获得成功的体验。我本着“以人为本,关注学生”的教学思想,试图建立“提出问题——解决问题——举出例子——总结归纳”的基本教学模式,让学生展开自主学习活动,学生在建模的教学活动中找到了数学学习的方法,使传统的“指导接收式”转变为“自主探究式”,充分体现课程改革的教学思想。 纵观本节课突出了以下几个特点:

  一、学习问题的产生激发了学生的探究的欲望。

  课堂上我从口算A、B两组竞赛题入手,让学生练习计算,比速度,让学生马上意识到算B组题的速度明显比A组题快,先声夺人,让孩子感受到简便算法的优越,接着教师引导:为什么B组题算得快,这其中蕴含哪些数学知识呢?这一问题马上激起了学生探究的欲望,学习问题的产生将学生自然带入到学习状态中,激发了学生强烈的探究欲望。

  二、情境的创设发散了学生的数学思维。

  教学新知前我让学生对课题“加法的运算定律”说说自己的理解,学生很自然地想到:我们今天要研究的是加法的一些运算规律,再由贴近学生的生活情境引入主题,让学生自由地提问,学生提出的问题多数是用加法解决的问题,不仅培养了学生发散性的思维,还能让学生提出的问题直奔主题,老师的引导做到了有放有收,从而提高了学习效率。

  三、学法的指导体现了知识建模的过程。

  数学课标指出:在数学教学过程中,教师应注重渗透建模的思想。本节课我注重“授之鱼”,更注重“授之以渔”。先是和学生一起学习了加法的结合律,总结出了四步学习法:提出问题---解决问题---举出例子----总结归纳。建立这样的模型后让学生按照这样的方法展开自学活动。本节课的教学并不是仅仅让学生掌握加法的运算定律,更重要的是要掌握解决问题的方法,培养学生观察、分析、比较、概括的能力。整节课对学生有“扶”又“放”,在教会孩子知识的同时,也教会了孩子的学习方法。这四步学习法对后续一些运算定律的学习,一些规律的推理和验证都用重要的意义。

  四、以学生为主体创造性地使用教材。

  本节课的教学内容如果按教材的编排程序去学习是体现了知识的学习由浅入深,循序渐进。但我觉得学生自学加法结合律有一定的难度,需要教师的引导才能学懂、学透,而加法交换律学生很容易通过老师的“自学提示”展开学习,所以我大胆地对教材的内容进行了调整,先领学生学习加法结合律,而加法交换律我放手让学生根据“四步学习法导学单”进行自学,学生的学习效果非常好。课堂上做到了以学定教,立足于学生的学,立足于学生的终生学习和可持续性发展。

  不足的是,在使用导学单进行导学中,对学生的学情了解不透,导致导学单中某些问题的设置起点偏高,拖延了教学时间,最后的练习量过大,这点是在我精心准备教案设计和课件的同时,留下的最大遗憾。

加法交换律教学反思11

  《加法交换律》是义务教育教科书(人教版)数学四年级下册P17:例1的内容。运算定律是本册书中的重点,也为以后的简便运算打下基础。

  本节教学我利用学生的举例、观察、发现、归纳,总结出加法交换律,环节设计合理,也激发了学生的学习积极性。

  在情境导入环节,我利用播放成语故事《朝三暮四》引起学生对新知识的求知欲。让学生从故事中找信息,自己提出问题,然后学生解决问题。从故事中得到3+4=7(个)和4+3=7(个)这两个算式。接着我说:“对,两种吃法不同,结果猴子每天吃到的栗子的总数量是同样多的。”这就是今天要研究的内容,加法交换律。

  在探究规律环节,我利用李叔叔骑车旅行的情景图。让学生从情景图中找信息,自己提出问题,然后学生解决问题。 根据学生回答板书:40+56=96(千米)或 56+40=96(千米)然后让学生说出这两个算式的相同点和不同点。学生回答,相同点是每组算式中有两个加数,而且两个加数相同,左右两边的加数的和相等。不同点是两个加数交换了位置。然后问:“这两个算式的和相等,这两个算式之间有什么关系?可以用什么符号连接?”学生从中回答,每组算式中有两个加数,而且两个加数相同,只是交换了位置,而得到40+56=56+40这个等式。我接着问:“你能照样子再举几个例子吗?”调动了学生的积极性。学生从这些例子可以得出什么规律?请用最简洁的话概括出来,学生回答:两个数相加,交换加数的位置,和不变,这叫做加法交换律。如果用字母a、b表示两个加数,则可以写成:a+b=b+a我问:“你能用自己喜欢的方式来表示加法交换律吗”然后学生回答特别多,像甲数+乙数=乙数+甲数,▲+=+▲等等特别多。虽然有的式子不够完美,但充分说明学生已经掌握了加法交换律。

  在巩固练习环节,我设计了多种多样的练习题,先是基础练习,还有拔高练习,层层深入,学生学得也兴趣盎然。

  总结本节课,整节课环节紧凑,利用多媒体课件也节省了大量时间,有充分的时间练习。由于本节课内容不多,也很简单,学生的注意力也很集中,学生发言积极,所以也很好的完成了教学任务,学生也完成了学习任务。

  但是本节课也有很多不足之处:1、在巩固环节,我出示了三道加法算式,但是有的学生利用减法验算,这样是不符合要求的。这时我应该让学生说出为什么不行,不应该老师解释,2、最后填表,由于时间关系我没给学生足够的时间,问题解决的不太理想。

加法交换律教学反思12

  加法的运算定律是运算体系中的普遍规律。为了让学生能够理解并掌握这一规律,以便为今后的应用服务。我在教学中从学生的已有知识经验的实际状态出发,通过抽象建模,大胆猜测, 操作验证,合作总结这四个环节,让学生能够理解加法运算定律的含义,并从过程中体验成功的喜悦或失败的情感。

  本课我把凑整简算的思想贯穿始终,让学生从学习中体验选择简便的方法是学习的最好途径。对于小学生来说,运算定律的理解与运用是培养和发展学生抽象的极好时机。本节课,我引导学生在知识的形成过程中提升学生的思维能力,在课堂上充分调动学生积极性,让孩子们大胆猜想,举例验证、得出结论。纵观本课教学主要有以下几个特点:

  1、在复习引用中,巩固学生的思维基础。

  通过一组口算练习,让学生明确能够凑整十或整百数的两个数加起来比较简便,这个为后面学习结合律打下基础。

  2、大胆猜想,自主探究,培养学生独立思考的能力。

  在教授新课的过程中,我通过提问、设疑,让学生观察—猜测—举例—验证四个环节,同时通过小组合作得出结论。这样既培养了学生的抽象概括能力,同时让学生的思维得到了有效的训练和发展。

  3、多层次的巩固练习,有效提升学生的思维。

  习题设计能有效促进学生思维的发展,本节课在习题设计中,一共设计了四个环节:①基本练习(填空)②变式练习(判断)③巩固练习(计算)④发展提高等。让学生通过练习巩固本课所学内容。

  在教学中也存在以下不足:

  1加法结合律学习在教学中所占比率应加大,学生在学习中还有疑虑,没有学透。

  2、整堂课在时间安排上有些前松后紧,在加法交换律上时间过长,练习的时间相应较短,显得后面在练习中有些仓促。

  3、教师的语言过于*化,不适于中年级学生的年龄。

加法交换律教学反思13

  教学“加法交换律”这一块内容时我打破了传统的课堂教学结构,注重培养学生的创新意识和实践能力。整个过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。

  数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标*衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。在教学“加法交换律”这部分内容中,我在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律”,同时可迁移到“乘法”中来,获得“乘法交换律”。在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。

加法交换律教学反思14

  前段时间听了四年级的一节研讨课——“加法交换律”。课中,教师让学生“用自己喜欢的方式表示加法交换律”,很简单的要求,学生十拿九稳的不会出错,但是学生表现出乎我意料之外:

  学生1:√+×=⊿,×+√=⊿,√+×=×+√;

  学生2:a+b=w=b+a=w

  ……

  回顾课堂,执教者老师笑容甜美,语言亲切,精心设计了这节研讨课:

  教师从学生熟悉的生活情境“李叔叔一天共骑了多少千米?”引入新课,学生列式后分析得出:40+56=56+40,在此基础上教师又利用天*的直观演示,引导学生得到两个等式:50+10=10+50、100+20=20+100,学生观察三个等式交流总结初步体验“加法交换律”。接着教师让学生自主举例子,学生积极踊跃:1+3=3+1,789+121=121+789……,教师再次让学生观察黑板上的7个算式,结合算式让学生进一步的理解“加法交换律”,并比较辨析加法交换律中的“变”和“不变”,最后教师才水到渠成的在黑板上板书课题“加法交换律”。

  对于“加法交换律”的得出教师真是花了心思,下足了功夫。可是从学生“用自己喜欢的方式表示加法交换律”这个环节的表现看得出,学生对“加法交换律”的理解没有到位。问题在哪里呢?我认为,加法交换律的内容比较简单,学生在一、二年级已经有了大量的感性认识,只是到四年级才开始总结提升“把零散的感性认识上升为理性认识”。用语言表述加法交换律,以及用字母表示加法交换律,对学生来说也不是很困难的。因此这节课,对于“加法交换律”的得出,可以更简洁,只用一个情境就可以,天*的效果不是很好,天*小,很多同学没有看见,因此天*的环节可以取消;黑板的板书也可以更简洁,只板书等式;要让学生体会符号表示“加法交换律”的简明以及让学生体验运用“加法交换律”可以使有些计算简便。

  【思考】我们在*时的教学中是不是把探究新知的过程搞复杂了?探究新知的时候,为了追求“完美”,为了讲得“透彻”,我们会步步为营,取各家“精华”放在一起,舍不得“丢弃”,于是,很简单的知识点的探究,在我们的设计下,就……。有位哲人说:“简约到极致,就是美丽。”正所谓:“大道至简”,其实,教学也是如此,“简约”更美,简约的数学课堂必然是美丽的课堂,这种美丽同样有着多层的解读:它是教师个性化教学思想光辉的折射;它是数学学科本身逻辑、严谨、充满理性精神的魅力凸现;它是“简约而不简单”这样一句流行语的生动注解;它是学生在教师引导下用“四两拨千斤”方式自主学习的完美演绎……设计简洁的教学环节,采用简便的教学方法,也能有效,也能让学生喜欢而轻松愉快、积极主动地欣然接纳!

加法交换律教学反思15

  《加法交换律》是人教版四年级下册第三单元第一节概念课,是在学生已经掌握四则运算的基础上进行教学。本节课的教学设计有意识地让学生运用已有经验,亲身经历这一规律的发现过程,同时注重学习方法的渗透,为高年级的学习打下基础。

  作为一堂概念形成课,我们要让学生经历有效地探索过程。通过不断的猜想,不断的论证,最终得出结论。教学中以学生为主体,教师为主导,激励学生动手、动脑、动口积极探究问题。现对本节课的教学总结如下:

  一、“速算比赛”妙入课题

  本节课,以计算题为切入口,精心挑选了相关计算题,让学生通过计算发现所给题的区别与联系,引发学生思考:通过观察这组得数相同的算式,你发现了什么?学生能较快的发现,两个加数交换位置,他们的和不变。同时得到全班同学异口同声的赞同,这是老师提出疑惑:是否所有的两个数相加,交换加数的位置,他们的和不变呢?抛出问题,引出猜想,进而问学生:你还能写出像这样的算式吗?让学生动手写算式,充分经历概念形成的过程,在写的过程中发现问题:这样的算式你能写多少个?“无数个!”紧接着老师追问:“那你能用一个算式概括所有的算式吗?”引导学生探索加法交换律的公式表达。通过汇报、展示,揭示课题。

  二、微课引入,火龙点睛

  在教学中,我提了一个问题:今天所学的《加法交换律》在以前的学习中我们也是否接触到了呢?引导学生回顾旧知,给他们一分钟的思考交流时间,有的同学能够说到一二,有的却一脸茫然,这个时候引入了提前准备好的微视频,其中的配音就是找了本班学生配的。当大家听到熟悉的童声,看到一年级的看图写算式以及三年级的加法验算等,(都用到了加法交换律,只是当时没有把这个概念提出来而已,)豁然开朗,课堂顿时热闹起来。让同学们把前面的旧知和今天的新授结合起来,加深了新知的理解,起到了画龙点睛的效果。

  三、留下悬念,提升迁移

  在课堂最后,我又给孩子们抛出了一个悬念:既然加法有交换律,那减法呢,除法和乘法呢?这个问题不仅引起了学生的兴趣,更为后面的学习埋下了伏笔。我看到学生们不由自主的在本子上写出算式进行验证,说明本节课的数学思想方法已经潜移默化到他们的脑海中。他们能很快的通过举例论证来否定减法和除法没有。“而乘法有吗?在后面的学习中我们将继续探讨这个问题”由此结束本节课。

  总体来说,本节课达到了预期的效果,让加法交换律深入了他们的内心,特别是让他们经历了“提出猜想-举例论证-得出结论”的过程。本节课不仅仅学会了加法交换律,更让他们学会了数学方法,为下节课的加法结合律以及乘法交换律做好了铺垫。更难得可贵的是,学习中不仅仅收获了数学知识,更收获了期间的数学兴趣。


《加法交换律和乘法交换律》教学设计3篇(扩展4)

——《乘法分配律》教学设计10篇

《乘法分配律》教学设计1

  教学目标:

  1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。

  2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

  教学重难点:

  发现并理解乘法分配律。

  教学准备:挂图、小黑板。

  教学流程:

  一、创设情境,导入新课。

  师生谈话,引入主题图:老师准备为参加学校排球操比赛的五位同学去购买衣服。

  看看买什么衣服好看呢。

  二、自主探索,合作交流。

  1.出示:买5件夹克衫和5条裤子,一共要付多少元?

  师问你打算怎样算?

  生口答师板书:

  (65+45)×565×5+45×5

  请学生分别说清两道算式的含义。

  2.师问猜想一下,这两道算式的结果会怎样?

  要验证我们的算式是否正确,应该用什么方法?

  生计算,个别板演。

  证明这两道算式的结果是相等的"。

  中间应用“=”接连。

  3.生读算式(65+45)×5=65×5+45×5

  师问等号两边的算式有什么相同和不同?

  生同桌说一说,并汇报。

  4.这两道算式相等是一种巧合还是有规律的呢?

  出示:(2+10)×6=2×6+10×6

  (5+6)×3=5×3+6×3

  师问中间可以用“=”来连接吗?

  5.小组讨论:这三组等式左边有什么特点?

  右边有什么特点?

  生汇报。

  6.师问你能写出具有这样规律的等式吗?

  生独立写一写,个别板书。

  7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?

  生写一写,个别板演。

  8.揭题:乘法分配律

  (a+b)×c=a×c+b×c

  9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。

  三、巩固练习,拓展应用。

  想想做做:

  1.在口里填上合适的数,在○里填上运算符号。

  (42+35)×2=42×口+35×口

  27×12+43×12=(27+口)×口

  15×26+15×14=口○(口○口)

  72×(30+6)=口○口○口○口

  强调:乘法分配律,可以正着用,也可以反着用。

  2.横着看,在得数相同的两个算式后面画“√”

  (28+16)×728×7+16×7

  15×39+45×39(15+45)×39

  74×(20+1)74×20+74

  40×50+50×9040×(50+90)

  3.算一算,比一比,每组中哪一道题的计算比较简便。

  (1)64×8+36×825×17+25×3

  (64+36)×825×(17+3)

  让学生体会乘法分配律可以使计算简便。

  4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。

  生独立完成并汇报。

  5.你能根据下图列出两

  道综合算式吗?

  上面的两道算式能组成一个等式吗?

  四、全课小结

  师问今天你有什么收获?和你的小伙伴说一说。

  五、课堂作业

  《补充习题》第26页。

《乘法分配律》教学设计2

  教学内容

  苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。

  教学目标

  1.使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。

  2.使学生在发现规律的过程中,发展观察、比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3.使学生能联系实际,主动参与探索、发现和概括规律的学习活动,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和信心。

  教学过程

  一、创设比赛场景,在活动中激趣

  谈话:听说我们四(1)班的同学口算速度快,正确率高,想不想显一显身手?那我们来一个速算比赛怎么样?

  A组B组

  (1)135×6+65×6(1)(135+65)×6

  (2)9×37+9×13(2)9×(37+13)

  在A组同学不服气,说B组容易时,教师激趣:是吗?B组容易?那我们再来一次好吗?

  A组B组

  (1)(10+4)×25(1)10×25+4×25(2)(4+8)×125(2)4×125+8×125

  谈话:为什么这次A组又输了?观察观察,可不要冤枉了老师。你们有什么发现?(学生讨论交流)

  小结:这真是一个了不起的发现。一切数学知识来源于发现问题,而一个伟大的数学家有所成就在于他发现问题。看看今天我们的同学们发现一个怎样的数学知识。有信心吗?给自己鼓鼓掌!

  谈话:同学们,我们学校有5个同学就要去参加“海安县首届批发王杯少儿才艺大赛”了,声乐兴趣小组的于老师准备为他们每人买一套一样的漂亮服装,我们一起去看看好吗?

  【评析:玩是学生的天性。心理学研究表明:促进人素质、个性发展的最主要途径是实践活动,而“玩”正是儿童所特有的实践活动形式。如何让学生玩出效果来?教师提供了一个“竞赛”的机会,让学生在“竞赛”中发现竞赛的不公*,近而寻找不公*的原因,激发了学生学习的兴趣。在探究原因的过程中,学生潜移默化地感知了同组算式之间的关系。】

  二、创设活动情境,在合作中探究

  1.交流算法,初步感知

  (课件出示例题情境图)

  谈话:从图中你了解到了哪些信息?于老师可以怎样搭配服装?

  (1)学生的选择方法1:买5件夹克衫和5条裤子

  一共要付多少元呢?你能解决这样的问题吗?学生独立列式计算。(教师巡视,安排不同方法解答的学生板演,并了解全班学生采用的什么方法)

  反馈:你是怎样解决这一问题的?为什么这样列式?

  组织学生交流自己的解题方法,再分别说说两个算式的意义。(课件显示)

  谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

  学生在自己的本子上写,教师巡视。

  [教师板书:(65+45)×5=65×5+45×5],让学生读一读。

  (2)学生的选择方法2:买5件短袖衫和5条裤子

  提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

  根据学生回答,列出算式:32×5+45×5和(32+45)×5

  再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

  [教师板书:(32+45)×5=32×5+45×5]

  启发:比较这两个等式,它们有什么相同的地方?

  2.深入体验,丰富感知。

  现在请每个同学拿出信封中的练习纸,想一想在这几组算式中,哪些可以用等号连起来(在□里画=号),哪些不能?当然你可以先计算每组中两个算式的得数,也可以仔细观察。

  在得数相同的两个算式中间的□里画“=”

  (1)(28+16)×7□28×7+16×7

  (2)15×39+45×39□(15+45)×39

  (3)74×(20+1)□74×20+74

  (4)40×50+50×90□40×(50+90)

  (5)(125×50)×8□125×8+50×8

  分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?有办法使他们变得相等吗?(课件显示修改过程)

  谈话:你能写出几组类似这样的式子吗?大家动手写一写。(提醒学生认真算一算你写出的等式两边是不是相等)

  学生举例并组织交流。(比较这些等式是否具有相同的特点)

  3.反思学习,揭示规律

  提问:像这样的等式,写得完吗?像这样等号左边和右边的式子都会相等,这是不是巧合?还是有什么规律存在?

  谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

  如果用a、b、c代表上面等式中的数,这个规律怎样表示?[板书:(a+b)×c=a×c+b×c板书好适当图例解释意思]

  小结:同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)

  (课件显示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。)

  对于乘法分配律,用字母来表示,感觉怎样——简洁、明了,这就是数学的美!

  【评析:深层次的探究,教师不急于点明规律,维持学生的好奇心,通过学生讨论,使学生积极主动地去发现总结规律,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识,让学生体会到成功的快乐。】

  三、巩固内化知识,在实践中运用

  谈话:让我们带着自己发现的数学知识进入今天的“数学乐园”吧!

  1.大显身手

  出示“想想做做”第1题,让学生在书上填一填。

  师:第2题你是怎么想的"?

  小结:乘法分配律可以正着用,也可以反着用。[补充板书:a×c+b×c=(a+b)×c]

  2.生活应用

  (“想想做做”第3题)

  小结:说说两种方法的联系。

  3.巧妙运用

  (“想想做做”第4题)(同桌一人做一组,做在练习本上)

  谈话:每组两道算式有什么联系?哪一题计算比较简便?

  现在你知道上课开始时为什么B组同学算得快吗?

  小结:乘法分配律可以使计算简便。

  4.明辨是非

  我校二年级有3个班,每个班有34人。三年级有2个班,每个班有36人。二三年级一共有多少人?

  王小明这样计算:

  (3+2)×(34+36)

  =5×70

  =350(人)

  ①观察一下,你赞同王小明的算法吗?为什么?

  ②要用乘法分配律,要有什么条件?

  5.巧猜字谜

  猜一猜,等号后边是三个什么字?

  人×(1+2+3)=

  6.大胆猜想

  如果把乘法分配律中的加号改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?

  学生小组交流猜想。

  谈话:我们再回到课开始的那条题目上,如果于老师想知道“买5件夹克衫比5件短袖衫贵多少元?”你能帮她吗?试试看!

  教师组织、引导学生总结得出:

  (a-b)×c=a×c-b×c

  小结:大家真了不起!让我们为自己的伟大发现热烈鼓掌吧!

  【评析:例题的第三次变式,为学生的猜想提供了素材,也让本课学生的探究得到延伸,拓展了“乘法分配律”的意义。练习的设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。】

  四、回忆梳理知识,在反思中总结

  今天这节课,你有什么收获?

  五、布置作业:“想想做做”第5题。

《乘法分配律》教学设计3

  教学内容分析:

  乘法分配律是北师大版小学数学四年级上册第三单元P48~P49的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

  教学目标:

  知识与能力:

  1、在探索的过程中,发现乘法分配律,并能用字母表示。

  2、会用乘法分配律进行一些简便计算。

  过程与方法:

  1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

  2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

  情感、态度与价值观:

  1、在这些学习活动中,使学生感受到他们的身边处处有数学。

  2、增加学生之间的了解、同时体会到小伙伴合作的重要。

  3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

  教学过程:

  一、创设情境,激趣导入。

  1、出示:

  125×8=25×9×4=18×25×4=

  125×16=75+25=89×100=

  教师请个别学生口算并说出部分题的口算依据及应用的定律。

  2、再出示:119×56+119×44=

  师;这一题,谁能口算出来?老师可以口算出来,你们相信吗?是不是老师又应用到数学的什么定律呢?你们想不想知道?

  二、引导探究,发现规律。

  1、出示课本插图

  师:你们看,工人叔叔正在工作呢,观察这幅图,你能发现哪些数学信息?

  生:我看到两个工人叔叔在贴瓷砖。

  生:我发现一个叔叔贴这面墙壁,另一个叔叔贴另一面墙壁。

  生:老师,我发现两个叔叔贴的瓷砖一起数的话,一行有10块,一共有9列。

  师:你真细心。大家能根据获得的信息提一个数学问题吗?

  学生提问题,教师出示问题:一共贴了多少块瓷砖?

  2、估计

  师:谁能估计工人叔叔大约贴了多少块瓷砖?

  学生试着估计。

  3、列式解答

  师:同学们的估计是否正确呢?请你们用自己喜欢的方法计算一下瓷砖究竟有多少块。

  学生用自己喜欢的方法计算,教师巡视。

  师:谁来向大家介绍一下自己的算法?

  生:6×9+4×9(板书)

  =54+36

  =90(块)

  师:这边的6×9和4×9分别是算什么?

  生:分别算出正面和侧面贴的块数。

  师:哦,然后两面的块数再相加,就是贴的总块数。你们明白吗?还有不一样的方法吗?

  生:我是这样列的,(6+4)×9(板书)

  =10×9

  =90(块)

  师:你能说说为什么这样列式吗?

  生:两面墙共有9列,一行有6+4块,所以我先算出一行有10块,再用10×9算出共有多少块瓷砖。

  师:你真行,找到了这种方法。现在同学们看一下这两种方法,你发现了什么?

  生:计算方法不一样,结果却是一样的。

  师:所以这两个式子我们可以用一个什么样的数学符号连接起来?

  生:等于号。

  教师板书。

  4、观察算式的特点

  师:观察等号两边的式子,它们有什么特点呢?

  生:等号左边的算式是两个加数的和与一个数相乘的积,等号右边

  的算式是这两个加数分别与一个数相乘,再把所得的积相加。

  生:等号左边算式中的两个加数,就是等号右边算式中两个不同因数;等号左边算式中的一个因数,就是等号右边算式中两个相同的因数。

  师:是这样吗?你们能再举一些类似的例子吗?

  5、举例验证

  让学生根据算式特征,再举一些类似的例子。

  如:(40+4)×25和40×25+4×25

  63×64+63×36和63×(64+36)

  讨论交流:

  (1)交流学生的举例是否符合要求:

  (2)交流不同算式的共同特点;

  (3)还有什么发现?(简便计算)

  师:两个数的和与一个数相乘的积等于每个加数分别与这个数相乘再把所得的积加起来,这叫做乘法分配律。

  6、字母表示。

  师:如果用a、b、c分别表示三个数,你能写出你的发现吗?

  学生先独立完成,然后小组交流。最后教师板书:(a+b)×c=a×c+b×c并带读。

  7、揭示课题。

  三、应用规律,解决问题。

  课文第49页的“试一试”。请同桌讨论探究下面这些题目怎样计算比较简便?

  1、(80+4)×25

  (1)呈现题目。

  (2)指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。

  (3)鼓励学生独自计算。

  2、34×72+34×28

  (1)呈现题目。

  (2)指导观察算式特点,看是否符合要求。

  (3)简便计算过程,并得出结果。

  3、让生观察:36×3

  =30×3+6×3

  =90+18

  =108

  师:你能说说这样计算的道理吗?

  生独自思考,小组讨论,全班交流。

  四、总结。

  师:说说这节课你有什么收获?

  师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。希望同学们要在理解的基础上牢牢记住它。

《乘法分配律》教学设计4

  教学内容

  苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。

  教学目标

  1、使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。

  2、使学生在发现规律的过程中,发展观察、比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和信心。

  教学过程

  一、创设比赛场景,在活动中激趣

  谈话:听说我们四(1)班的同学口算速度快,正确率高,想不想显一显身手?那我们来一个速算比赛怎么样?

  A组B组

  (1)135×6+65×6(1)(135+65)×6

  (2)9×37+9×13(2)9×(37+13)

  在A组同学不服气,说B组容易时,教师激趣:是吗?B组容易?那我们再来一次好吗?

  A组B组

  (1)(10+4)×25(1)10×25+4×25(2)(4+8)×125(2)4×125+8×125

  谈话:为什么这次A组又输了?观察观察,可不要冤枉了老师。你们有什么发现?(学生讨论交流)

  小结:这真是一个了不起的发现。一切数学知识来源于发现问题,而一个伟大的数学家有所成就在于他发现问题。看看今天我们的同学们发现一个怎样的数学知识。有信心吗?给自己鼓鼓掌!

  谈话:同学们,我们学校有5个同学就要去参加“海安县首届批发王杯少儿才艺大赛”了,声乐兴趣小组的于老师准备为他们每人买一套一样的漂亮服装,我们一起去看看好吗?

  【评析:玩是学生的天性。心理学研究表明:促进人素质、个性发展的最主要途径是实践活动,而“玩”正是儿童所特有的实践活动形式。如何让学生玩出效果来?教师提供了一个“竞赛”的机会,让学生在“竞赛”中发现竞赛的不公*,近而寻找不公*的原因,激发了学生学习的兴趣。在探究原因的过程中,学生潜移默化地感知了同组算式之间的关系。】

  二、创设活动情境,在合作中探究

  1、交流算法,初步感知

  (课件出示例题情境图)

  谈话:从图中你了解到了哪些信息?于老师可以怎样搭配服装?

  (1)学生的选择方法1:买5件夹克衫和5条裤子

  一共要付多少元呢?你能解决这样的问题吗?学生独立列式计算。(教师巡视,安排不同方法解答的学生板演,并了解全班学生采用的什么方法)

  反馈:你是怎样解决这一问题的?为什么这样列式?

  组织学生交流自己的解题方法,再分别说说两个算式的意义。(课件显示)

  谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

  学生在自己的本子上写,教师巡视。

  [教师板书:(65+45)×5=65×5+45×5],让学生读一读。

  (2)学生的选择方法2:买5件短袖衫和5条裤子

  提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

  根据学生回答,列出算式:32×5+45×5和(32+45)×5

  再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

  [教师板书:(32+45)×5=32×5+45×5]

  启发:比较这两个等式,它们有什么相同的地方?

  2、深入体验,丰富感知。

  现在请每个同学拿出信封中的练习纸,想一想在这几组算式中,哪些可以用等号连起来(在□里画=号),哪些不能?当然你可以先计算每组中两个算式的得数,也可以仔细观察。

  在得数相同的两个算式中间的□里画“=”

  (1)(28+16)×7□28×7+16×7

  (2)15×39+45×39□(15+45)×39

  (3)74×(20+1)□74×20+74

  (4)40×50+50×90□40×(50+90)

  (5)(125×50)×8□125×8+50×8

  分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?有办法使他们变得相等吗?(课件显示修改过程)

  谈话:你能写出几组类似这样的式子吗?大家动手写一写。(提醒学生认真算一算你写出的`等式两边是不是相等)

  学生举例并组织交流。(比较这些等式是否具有相同的特点)

  3、反思学习,揭示规律

  提问:像这样的等式,写得完吗?像这样等号左边和右边的式子都会相等,这是不是巧合?还是有什么规律存在?

  谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

  如果用a、b、c代表上面等式中的数,这个规律怎样表示?[板书:(a+b)×c=a×c+b×c板书好适当图例解释意思]

  小结:同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)

  (课件显示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。)

  对于乘法分配律,用字母来表示,感觉怎样——简洁、明了,这就是数学的美!

  【评析:深层次的探究,教师不急于点明规律,维持学生的好奇心,通过学生讨论,使学生积极主动地去发现总结规律,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识,让学生体会到成功的快乐。】

  三、巩固内化知识,在实践中运用

  谈话:让我们带着自己发现的数学知识进入今天的“数学乐园”吧!

  1、大显身手

  出示“想想做做”第1题,让学生在书上填一填。

  师:第2题你是怎么想的?

  小结:乘法分配律可以正着用,也可以反着用。[补充板书:a×c+b×c=(a+b)×c]

  2、生活应用

  (“想想做做”第3题)

  小结:说说两种方法的联系。

  3、巧妙运用

  (“想想做做”第4题)(同桌一人做一组,做在练习本上)

  谈话:每组两道算式有什么联系?哪一题计算比较简便?

  现在你知道上课开始时为什么B组同学算得快吗?

  小结:乘法分配律可以使计算简便。

  4、明辨是非

  我校二年级有3个班,每个班有34人。三年级有2个班,每个班有36人。二三年级一共有多少人?

  王小明这样计算:

  (3+2)×(34+36)

  =5×70

  =350(人)

  ①观察一下,你赞同王小明的算法吗?为什么?

  ②要用乘法分配律,要有什么条件?

  5、巧猜字谜

  猜一猜,等号后边是三个什么字?

  人×(1+2+3)=

  6、大胆猜想

  如果把乘法分配律中的加号改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?

  学生小组交流猜想。

  谈话:我们再回到课开始的那条题目上,如果于老师想知道“买5件夹克衫比5件短袖衫贵多少元?”你能帮她吗?试试看!

  教师组织、引导学生总结得出:

  (a-b)×c=a×c-b×c

  小结:大家真了不起!让我们为自己的伟大发现热烈鼓掌吧!

  【评析:例题的第三次变式,为学生的猜想提供了素材,也让本课学生的探究得到延伸,拓展了“乘法分配律”的意义。练习的设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。】

  四、回忆梳理知识,在反思中总结

  今天这节课,你有什么收获?

  五、布置作业:“想想做做”第5题。

《乘法分配律》教学设计5

  教学目标:

  1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

  2、通过观察、分析、比较,培养学生的分析、推理和概括能力。

  3、发挥学生主体作用,体验探究学习的快乐。

  教学重点:

  指导学生探索乘法的分配律。

  教学难点:

  乘法分配律的应用。

  教学准备:

  课件、口算题、例题、练习题等。

  教学策略:

  本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。

  教学流程:

  一、设疑导入

  师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?

  生:可以使计算简便。

  师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)

  【设计意图:这样开门见山的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。】

  二、探究发现

  1。猜想。

  师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

  师:这道题算得怎么不如刚才的快啊?

  生:它和前面的题目不一样。

  师:好,我们来看一下它与前面的题目有什么不同?

  生:前面的题都是乘号,这道题既有乘号还有加号。

  生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

  师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

  生:(10+4)×25=10×25+4×25。

  师:为什么这样算哪?

  生:我是根据乘法分配律算的。

  师:你是怎么知道的?你知道什么是乘法分配律吗?

  生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。

  师:你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

  2。验证。

  师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

  师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

  小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算?

  师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

  3。结论。

  生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。

  师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的意义。)

  师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?

  (a+b)×c=a×c+b×c

  师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。

  【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的可持续学习奠定了基础。】

  三、练习应用

  (生练习应用定律。)

  师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  四、总结

  师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)

  反思:

  本课的学习要使学生理解和掌握乘法分配律,并能正确地进行表述。让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透从特殊到一般,再由一般到特殊的认识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:

  一、主动探究,实现亲身经历和体验

  现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发现的过程,是在具体的情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)×25这样一个特殊的算式。接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的`可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、归纳总结出乘法分配律。整个过程中,我不是把规律直接呈现在学生面前,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个探究过程中,学生经历了一次严密的科学发现过程:猜想——验证——结论——联想。为学生的可持续学习奠定了基础。

  二、多向互动,注重合作与交流

  在数学学习中,学生的思维方式、智力、活动水*都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,教师在本课教学中立足通过师生多向互动,特别是通过学生与学生之间的互相启发与补充,来培养他们的合作意识,实现对“乘法分配律”这一运算定律的主动建构。学生对“乘法分配律”的建构过程,正是学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。正所谓“一枝独秀不是春,百花齐放迎春来”。

《乘法分配律》教学设计6

  教学目标

  1、使学生理解乘法分配律的意义、

  2、掌握乘法分配律的应用、

  3、通过观察、分析、比较,培养学生的分析、推理和概括能力、

  教学重点

  乘法分配律的意义及应用、

  教学难点

  乘法分配律的反应用、

  教具学具准备

  口算卡片、投影仪、

  教学步骤

  一、铺垫孕伏

  1、 口算、

  (27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4

  2、 用简便方法计算、(说明根据什么简算的)

  25×63×4

  3、 师生比赛,看谁算得又对又快、

  20×5+5×80 (1250+125)×8

  让学生说明是怎样算的?

  二、探究新知

  1、导入:

  刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容、(板书课题:乘法分配律)、

  2、教学例6:

  (1)出示例6:演示课件“乘法分配律”出示例6 下载

  (2)引导学生观察每组的两个算式、

  (3)教师提问:从上面的例子你发现了什么规律?

  (4)学生明确:每组中的两个算式都可以用等号连接、

  教师板书:(18+7)×6=150

  18×6+7×6=150

  (18+7)×6=18×6+7×6

  (5)教师出示:20×(15+9)=480

  20×15+20×9=480

  20×(15+9)=20×15+20×9

  学生分组讨论:每组中算式所表示的意义、

  (6)反馈练习:按题要求,请你说出一个等式、(投影出示)

  (__+__)×__=__+__×

  教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

  引导学生观察:等号左右两边算式的规律性

  启发学生回答:首先是等号左边两个数的和同一个数相乘、

  其次是等号右边两个加数分别同一个数相乘再把两个积相加、

  最后是等号左右两边的两个算式相等、

  3、教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变、这叫做乘法分配律、

  4、反馈练习:

  横线上能填几?为什么?

  (32+35)×4=__×4+__×4

  (62+12)×3=__×__+__×__

  教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?

  根据练习学生从而得出: (a+b)×c=a×c+b×c

  使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便、

  5、教学例7:演示课件“乘法分配律”出示例7 下载

  (1)出示例7:102×43

  启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

  引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?

  使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便、

  教师板书:

  (2)出示9×37+9×63

  引导学生观察:这类题目的结构形式是怎样的?有什么特点?

  教师提问:根据乘法分配律,可以把原式改写成什么形式?

  根据学生的回答教师板书:9×37+9×63

  =9×(37+63)

  =9×100

  =900

  学生讨论:这样算为什么简便?

  师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和、

  ②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数、

  ③另外两个不同的因数,是两个能凑成整十、整百、整千的加数、

  (3)揭示教师算得快的奥秘

  上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便、现在你们会了吗?

  三、巩固发展 演示课件“乘法分配律”出示练习

  1、 练习十四第1题、

  根据运算定律在□里填上适当的数、

  (43+25)×2=□×□+□×□

  8×47+8×53=□×(□+□)

  3×6+6×7=□×(□+□)

  8×(7+6)=8×□+□×□

  2、在横线上填上适当的数、

  (1)(24+8)×125=__×__+__×

  (2)25×(20+4)=25×__+25×__

  (3)45×9+ 55×9=(__+__) ×__

  (4)8×27+73×8=8×(__+__)

  其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写、

  3、把相等的算式用等号连接起来:

  (1)32×48+32×52 32×(48+52)

  (2)(24+8)×8 24×5+24×8

  (3)20×(l+15) 0×17+20×15

  (4)(40+28)×5 40×5+ 28

  (5)(10×125)×8 10×8+125×8

  (6)4×(30+25) 4×30×4×25

  学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

  4、选择题:

  (1)28×(42+29)与下面的( )相等

  ①28×42+28×29 ②(28+42)×(28+29) ③28×42×29

  (2)与a×8-b×8相等的式于是( )

  ①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8

  (3)与(10+8+9)×5相等的式子是( )

  ①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9

  5、练习十四第4题,投影出示、

  一辆凤凰牌自行车420元,一辆永久牌自行车405元、现在各买三辆、买凤凰车和永久车一共用多少元?

  四、课堂小结

  今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加、希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便、

  五、布置作业

  练习十四第3题、

  用简便方法计算下面各题、

  (80+8)×25  35×37+65×37

  32×(200+3) 38×29+38

  板书设计

《乘法分配律》教学设计7

  教学目标

  知识与技能:引导学生探究和理解乘法分配律。

  过程与方法:感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。教学重点:乘法分配律的意义和应用。

  教学难点:乘法分配律的反应用。

  教具学具:多媒体课件

  教学过程

  一、复习引入

  前几节我们学习的乘法交换律、结合律及应用它们可以使一些计算简便。

  什么是乘法的交换律和结合律?

  今天这节课我们再来学习乘法的另一个运算定律。

  二、新课探究

  出示主题图:还记得我们提出的第三个问题吗?

  参加植树的一共有多少人?

  1、你怎样解决这个问题?列式计算

  2、汇报:

  第一种算法:先算每个小组里有多少人?

  (4+2)×25

  =6×25

  =150(人)

  第二种算法:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数。

  4×25+2×25

  =100+50

  =150(人)

  3、观察这两个算是有什么特点?

  4、讨论,你得到什么结论?

  5、汇报:两个数的和于一个数相乘,可以先把它们与这个数分别相乘再相加。

  6、小结:这个规律就是乘法分配律。

  7、用字母怎样表示这个规律?

  三、巩固练习

  1、P27做一做

  2、拓展:乘法分配律是否也适用于减法?

  验证:18x5-5x8(18-8)x5

  265×105-265×5265×(105-5)

  结论:适用【2】教材分析:本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

  学情分析:学生具有很好的自主探究、团队合作、与人交流的习惯,在学习了乘法交换律和乘法结合律知识后,掌握了一些算式的规律,有了一些探究规律的方法和经验,只要教师注意指导和点拨,就一定会获得很好的教学效果。

  教学目标:

  知识与能力:

  1、在探索的过程中,发现乘法分配律,并能用字母表示。

  2、会用乘法分配律进行一些简便计算。

  过程与方法:

  1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

  2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

  情感、态度与价值观:

  在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

  教学重点和难点:

  教学重点:理解并掌握乘法分配律,发现问题、提出假设、举例验证、探索出乘法分配律。

  教学难点:乘法分配律的推理及应用。

  教学过程:

  一、复习引入,质疑猜想

  1、出示口算题:

  师:前段时间,我们发现了四则运算中的加法交换律、乘法交换律、加法结合律和乘法结合律,我们知道利用这些运算定律可以使一些计算更简便。下面各题看谁算得又对又快。

  358+25+7572+493+2825×19×4

  12×125×8168×5×214×2=

  交流:你是怎样想的?

  2、分组计算比赛

  师:下面我们再来一场分组计算比赛,好不好?

  出示:脱式计算

  第二组题目:45×12+55×1234×72+34×28

  第一、三组:(45+55)×12(72+28)×34

  师:你们觉得这场比赛公*吗?仔细观察两组算式,大家有什么发现?两个算式的结果是相等的,结果为什么相等呢?接下来,我们一起去进一步探究。

  二、探究新知,验证猜想

  1、出示:用两种方法计算这两个长方形中一共有多少个小方格?

  8×4+5×4(8+5)×4

  思考:为什么两个算式的结果相同呢?

  左边算式表示8个4加5个4,(一共13个4),右边也是求13个4,所以结果相等。

  2、出示:淘气打一份稿件,*均每分钟打字178个,他先打了6分钟,后又打了4分钟完成这份稿件。

  (1)请提一个数学问题(淘气一共打了多少个字?)

  (2)用两种方法解答问题

  (3)思考:为什么两次计算的结果相同呢?

  3、师:仔细观察,像上面这样的等式,你能再列出一组吗?在自己练习本上列一列,算一算,验证一下。这样的等式列得完吗?用a、b、c代表三个数,你能写出上面发现的规律吗?(a+b)×c=a×c+b×c大家发现的这个规律其实就是乘法分配律(板书课题)。

  能用自己的话说说什么叫乘法分配律吗?(两个加数的和与一个数相乘就等于把两个加数分别与这个数相乘,然后把乘积相加)

  想一想:这里的分配,表示什么意思?(表示分别配对的意思。)

  师:这道等式反过来写,依然成立吗?

  三、巩固新知,应用定律

  1、填一填:

  4×(25+8)=__×___+___×__

  38×37+62×37=___×(___+___)

  502×19+11×502=___×(___+___)

  48×99+48×1=___×(___+___)

  a×b+a×c=___×(___+___)

  2、判断对错:

  8×(125+9)=8×125+9()

  27×8+73×8=27+73×8()

  (12+6)×5=(12×5)×(6×5)()

  (25+9)×4=25×4+9×4()

  3、试一试

  (1)观察(40+4)×25的特点并计算

  (2)观察34×72+34×28的特点并计算

  4、分组计算比赛

  85×16+15×16(40+8)×25

  68×128-68×2834×(100+20)

  四、总结全课

  今天,我们又发现了什么?

  五、课外思考

  其实,乘法分配律我们并不陌生,大家想一想,以前在什么时候我们用过乘法分配律?

  板书设计:

《乘法分配律》教学设计8

  教学内容

  苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。

  教学目标

  1、使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配律可以使一些计算简便。

  2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

  教学过程

  一、创设情境,谈话导入

  谈话:同学们,我们学校有5个同学就要去参加“无锡市少儿书法大赛”了,书法组的张老师准备为他们每人买一套漂亮的服装,我们一起去看看好吗?(课件出示例题情境图)

  二、自主探究,合作交流

  1、交流算法,初步感知。

  提问:从图中你获得了哪些信息?

  再问:买5件上衣和5条裤子,一共要付多少元呢?你能解决这样的问题吗?请同学们在自己的本子上列出算式,再算一算。

  反馈:你是怎样解决这一问题的?为什么这样列式?

  组织学生交流自己的解题方法,再分别说说两个算式的意义。根据学生回答,教师利用课件演示,帮助解释。

  谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

  学生在自己的本子上写,教师板书,让学生读一读。

  谈话:刚才我们算的买5件夹克衫和5条裤子,一共要付多少元?如果张老师不这样选择,还可以怎样选择?(买5件短袖衫和5条裤子)

  提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

  根据学生回答,列出算式:32×5+45×5和(32+45)×5。

  再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

  启发:比较这两个等式,它们有什么相同的地方?

  2、深入体验,丰富感知。

  引导:看表情,相信大家一定或多或少地发现了等式两边算式之间的联系。现在请每个小组拿出信封中写有算式的纸条,想一想在这几组算式中,哪些可以用等号连起来,哪些不能?

  分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?两个算式的计算结果分别是多少?有办法使他们变得相等吗?

  要求:你能写出一些这样的等式吗?先试一试,再算一算你写出的等式两边是不是相等。

  学生举例并组织交流。

  3、揭示规律。

  提问:像这样的等式,写得完吗?

  谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

  反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

  小结:a加b的和乘c,与a乘c的积加b乘c的积的和是相等的。这就是乘法分配律。[板书:(a+b)×c=a×c+b×c]

  三、实践运用,巩固内化

  1、“想想做做”第1题。

  谈话:下面我们利用乘法分配律解决一些简单的问题。

  出示“想想做做”第1题,让学生在书上填一填。

  学生完成后,用课件反馈。

  2、“想想做做”第2题。

  你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。

  回答第2小题时,让学生说一说理由。

  3、“想想做做”第3题。(略)

  四、梳理知识,反思总结

  提问:今天这节课,你有什么收获?有什么感受想对大家说?

  五、布置作业

  “想想做做”第4、5题。

  [说明]

  数学教学是数学活动的教学。本节课注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,先组织学生通过用两种不同的方法解决一些实际问题,在两个不同的算式之间建立起联系,得到了两个等式,并比较这两个等式有什么相同的地方,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,为学生提供符合乘法分配律和不符合乘法分配律的五组算式,引导学生在小组辨析与争论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。

《乘法分配律》教学设计9

  教学目标:

  1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

  2、通过观察、分析、比较,培养学生的分析、推理和概括能力。

  3、发挥学生主体作用,体验探究学习的快乐。

  教学重点:

  指导学生探索乘法的分配律。

  教学难点:

  乘法分配律的应用。

  教学准备:

  课件、口算题、例题、练习题等。

  教学策略:

  本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。

  教学流程:

  一、设疑导入

  师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?

  生:可以使计算简便。

  师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)

  【设计意图:这样开门见山的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。】

  二、探究发现

  1、猜想。

  师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

  师:这道题算得怎么不如刚才的快啊?

  生:它和前面的题目不一样。

  师:好,我们来看一下它与前面的题目有什么不同?

  生:前面的题都是乘号,这道题既有乘号还有加号。

  生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

  师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

  生:(10+4)×25=10×25+4×25。

  师:为什么这样算哪?

  生:我是根据乘法分配律算的。

  师:你是怎么知道的?你知道什么是乘法分配律吗?

  生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。

  师:你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

  2、验证。

  师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

  师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

  小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算?

  师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

  3、结论。

  生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。

  师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的意义。)

  师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?

  (a+b)×c=a×c+b×c

  师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。

  【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的可持续学习奠定了基础。】

  三、练习应用

  (生练习应用定律。)

  师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  四、总结

  师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)

《乘法分配律》教学设计10

  教学目标

  1.使学生理解乘法分配律的意义.

  2.掌握乘法分配律的"应用.

  3.通过观察、分析、比较,培养学生的分析、推理和概括能力.教学重点:乘法分配律的应用

  教学难点:乘法分配律的反应用.

  教具:教学课件一套

  教学过程:

  一、比赛激趣,提出猜想

  (1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。 (请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)

  7×28+7×72

  7×(28+72)

  (2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)

  这两道题运算顺序不同,但结果相同,可以用一个等式表示:

  7×28+7×72=7×(28+72)

  (3)命名猜想。

  这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)

  二、引导探究,发现规律。

  1、我们下面就一起来验证一下这位同学的猜想在其它的题里是否也成立。

  2、商场 “五一”举行让利大折扣,王老师趁这机会去为参加校园歌手比赛的五位同学挑选服装,请看大屏幕:(出示情境图)

  (1)看到这幅图画,你了解到了什么信息?你想提什么问题?

  (2)你能用两种方法列出综合算式吗?

  (3)学生独立列式,教师巡视

  (4)交流反馈:你是怎么想的,怎样列式计算

  板书:65×5+45×5 (65+45)×5

  (5)观察这两个算式,你有什么发现?

  3、举例验证,进一步感受

  认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

  把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)轻声读这些等式,你发现了什么?

  4、归纳总结,概括规律。

  (1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

  (2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

  (3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

  (4)像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

  反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

  用字母表示:〔a+b〕×c=a×c+b×c

  用语言叙述:两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。

  (5)大屏幕出示关于乘法分配律的总结,学生齐读。

  三、探索发展,应用规律

  (1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

  (2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

  (8+4)× 25 34 ×72+34 ×28

  (完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

  四 、巩固内化

  1、 做“想想做做”第1题

  学生独立填写,指名报,全班共同校对。

  明确:根据什么这样填写?第1题和第2题在乘法分配律的应用上有什么不同的地方?

  2、 做“想想做做”第2题

  学生自己判断。然后请生说说判断的依据。

  3、 做“想想做做”第3题

  让每位学生都用两种方法计算长方形的周长,指名板演。

  明确:这两种算法有什么联系?符合什么规律?

  小结:通过长方形周长两种计算方法的比较,也说明了乘法分配律的合理性。另一方面也使我们看到,乘法分配律我们早已不自觉地在运用了。

  4、 做“想想做做”第4题

  让学生各自按运算顺序计算,指定两人板演,共同订正。

  提问:每组两道算式有什么联系?哪一题的计算比较简便?

  小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。

  五、 总结回顾


《加法交换律和乘法交换律》教学设计3篇(扩展5)

——加法交换律教学反思10篇

加法交换律教学反思1

  世界著名数学家和数学教育家弗赖登塔尔指出,数学的学习方法是实行再创造,也就是由学生本人把要学习的东西发现或创造出来。根据这个指导思想,我认为数学教学在关注知识和技能的同时更应注重学生“亲历性”、落实教学“主体性”,关注学生“学数学”、“做数学”的过程。以上教学过程打破了传统的课堂教学结构,注重培养学生的创新意识和实践能力。整个过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。

  1、注重教学目标的整合化。

  根据时代的发展和要求,数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标*衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。

  在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。

  2、注重教学内容的现实性。

  教学时,应根据学生的年龄特征和教学要求,从学生熟悉的情境和已有的知识出发进行调适,开展教学活动”。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。

  (1)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律在浙教版小学数学教材中分别安排在第七册和第八册,而在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的"认识由感性上升到理性。

  (2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课教师首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子来说明吗?这样利用捕捉到的“生活现象”引入新知,使学生对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了学生大胆探索的兴趣。

  (3)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整。本节课在教学材料的处理时,改变了把课本当作“圣经”的现象,让学生参与教学材料的提供与组织,给学生创设了一个创新和实践的学习环境,既激发了学生的学习动机和探究欲望,又使学生的身心得到了一种成功的体验。另外在材料呈现的顺序上,本节课改变了教材编排的顺序:在第七册教学加法交换律,在第八册教学乘法交换律,而是同时呈现,同时研究。因为当学生在已有认知结构中提取与新知相关的有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充分做到了尊重学生的认知规律。

  3、注重教学过程的探索性。

  在“教学要求”中,增加了“通过观察、操作、猜测等方式,培养学生的探索意识”的内容;在“教学应注意的几个问题”中,专门把“重视学生的探索意识和实践能力”作为一个问题进行论述,要求教师“依据学生的年龄特征和认知水*,设计探索性和开放性的问题,给学生提供自主探索的机会,让学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中,理解数学问题的提出,数学概念的形成和数学结论的获得,以及数学知识的应用”,“形成初步的探索和解决问题的能力”

  在交换律这节课中,教师鼓励学生根据自己的“数学现实”理解情景,发现数学,打破封闭式的教学过程,构建“问题——探究——应用——新问题——再探究”的开放式学习过程,体现学生是学习的主人,教师是教学活动的组织者、引导者和参与者。

  (1)创设生活情境,激励探究欲望。本节课,首先引导学生用“变与不变”的眼光观察身边的教学环境,进而采撷现实生活中的一种有趣现象,让学生初步感知问题,从而引起认知冲突,激发学生探究欲望。这样安排,既帮助学生消除了思维上的心理障碍,为新知的获得切实做好了心理和知识、能力的双重准备,又达到了激活学生原有知识、引起注意期待、诱发学生参与意识的目的,使教学始终处于学生思维的最近发展区之中。

  (2)引导学生探索,开发创造潜能。教师巧妙地利用生活原型,激活与新知学习有关的旧知,引导学生从原来的知识库中提取有效的信息,通过自组算式,整理、观察、分类、交流,逐步抽象概括、形成结论,并进行应用。在这个过程中,通过学生探索与创造、观察与分析、归纳与验证、矫正与调换等一系列数学活动,自主发现、自主探索加法交换律和乘法交换律,使学生感受到数学问题的探索性和挑战性,并从中认识到数学思考过程的条理性和数学结论的确定性。

  (3)反思探索过程,体验成功情感。问题解决后,引导学生对探究学习的活动过程进行反思:面对一个实际问题,我们是怎样来解决的?从中提炼出解决问题、获得新知的数学思想方法和有效策略,并自觉地将思维指向数学思想方法和学习策略上,从中获得积极的情感体验。

  (4)提倡教学相长,鼓励开拓创新。在本节课的最后,教师有意识的空出一定时间让学生来质疑问难。一方面让学生对本节课不懂的知识提出疑问,在师生帮助下及时解决;另一方面,让学生提出有价值的问题,既培养了学生提问题的能力,又能使学生的认知心理产生新的“不协调”,形成一个再探究的氛围。

  总之,本节课在教学过程中,突出了知识的系统性,学生的亲历性,尽量培养学生的主体意识,问题让学生自己去揭示,方法让学生自己去探究,规律让学生自己去发现,知识让学生自己去获得。课堂上给学生以充足的思考时间和活动空间,同时给学生表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。

加法交换律教学反思2

  在数学中,研究数的"运算,在给出运算的定义之后,最主要的基础工作就是研究该运算的性质。在运算的各种性质中,最基本的几条性质,通常称为“运算定律”。在加法和乘法的五条运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石”。在前面的学习中,学生已经接触到了反映这五条运算定律的大量例子,特别是对于加法、乘法的交换性和结合性,学生已经有了一定的认识基础。

  成功之处:

  1、整合教材内容,便于形成完整的认知结构。在以往教学中,都是按照教材的编排程序,按部就班,首先教学加法运算定律的教学,再进行乘法运算定律的教学,最后对比加法、乘法运算定律之间的联系和区别。虽然感觉教学有条不紊,但是总感觉缺失点什么,总感觉有这样一双手在禁锢自己的思想。如何让教学更能适应新形势下课改教学的要求,以学生为本,顺应学生认识发展需求,减轻学生背诵记忆的难度。因此在今年的教学中,我大胆改变了教材的编排程序,改变为加法、乘法交换律放在一课时进行教学,加法、乘法结合律也是如此。通过教学,有利于学生感悟知识之间的内在联系和区别,学生在理解的基础上,非常轻松的认识了加法、乘法交换律,记忆非常深刻牢固。

  2、经历“形成猜想、举例验证”的完整真实的过程,感悟数学研究的一般方法。在教学中,由故事“朝三暮四”引入,引发学生猜想,通过举例验证得出:两个加数交换位置,和不变的结论,然后又再次引发学生从结论进行猜想,让学生不仅知道从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论,也是一种非常好的获取结论的方法。通过结论引发猜想,学生很自然列举了例子进行证明,从而得出在乘法中,两个因数交换位置,积不变的结论。结论的得出顺其自然,水到渠成,真实感悟到了数学研究的一般方法。

  不足之处:

  习题的处理欠妥当。练习五1题只是要求学生将计算结果填入表中,没有让学生说说表中数的规律:可以以加号所对的那条对角线为对称轴,对应位置上的两数相等。这样在计算中可以利用这个规律,算出对角线及上半部分或下半部分,另一半可以照抄。

  再教设计:

  1、注重习题的备课,减少低效教学流程。

  2、注重对加法、乘法交换律的证明过程,可以通过集合图和点子图,让学生不仅要知其然,还要知其所以然。

加法交换律教学反思3

  课程标准提出“让学生经历有效地探索过程”。教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察猜想——举例验证——得出结论”这一数学学习全过程。基于以上理念本节课的教学我注意从教材出发,理解教材所要达到的教学目标,创造性地使用教材,调整了教材的知识结构,真正做到用教材教,而不是教教材。充分发挥出教师的主导性、学生的主体性。本节课打破传统的课堂教学结构,注重学生观察、比较和分析能力的培养,让学生从已有的生活经验出发,根据已有经验自主探索知识的形成过程。课堂上关注学生的个人体验,满足的学习需求,强化学生的积极情感,使学生不断获得成功的体验。我本着“以人为本,关注学生”的教学思想,试图建立“提出问题——解决问题——举出例子——总结归纳”的基本教学模式,让学生展开自主学习活动,学生在建模的教学活动中找到了数学学习的方法,使传统的“指导接收式”转变为“自主探究式”,充分体现课程改革的教学思想。 纵观本节课突出了以下几个特点:

  一、学习问题的产生激发了学生的探究的欲望。

  课堂上我从口算A、B两组竞赛题入手,让学生练习计算,比速度,让学生马上意识到算B组题的速度明显比A组题快,先声夺人,让孩子感受到简便算法的优越,接着教师引导:为什么B组题算得快,这其中蕴含哪些数学知识呢?这一问题马上激起了学生探究的欲望,学习问题的产生将学生自然带入到学习状态中,激发了学生强烈的探究欲望。

  二、情境的创设发散了学生的数学思维。

  教学新知前我让学生对课题“加法的运算定律”说说自己的理解,学生很自然地想到:我们今天要研究的是加法的一些运算规律,再由贴近学生的生活情境引入主题,让学生自由地提问,学生提出的问题多数是用加法解决的.问题,不仅培养了学生发散性的思维,还能让学生提出的问题直奔主题,老师的引导做到了有放有收,从而提高了学习效率。

  三、学法的指导体现了知识建模的过程。

  数学课标指出:在数学教学过程中,教师应注重渗透建模的思想。本节课我注重“授之鱼”,更注重“授之以渔”。先是和学生一起学习了加法的结合律,总结出了四步学习法:提出问题---解决问题---举出例子----总结归纳。建立这样的模型后让学生按照这样的方法展开自学活动。本节课的教学并不是仅仅让学生掌握加法的运算定律,更重要的是要掌握解决问题的方法,培养学生观察、分析、比较、概括的能力。整节课对学生有“扶”又“放”,在教会孩子知识的同时,也教会了孩子的学习方法。这四步学习法对后续一些运算定律的学习,一些规律的推理和验证都用重要的意义。

  四、以学生为主体创造性地使用教材。

  本节课的教学内容如果按教材的编排程序去学习是体现了知识的学习由浅入深,循序渐进。但我觉得学生自学加法结合律有一定的难度,需要教师的引导才能学懂、学透,而加法交换律学生很容易通过老师的“自学提示”展开学习,所以我大胆地对教材的内容进行了调整,先领学生学习加法结合律,而加法交换律我放手让学生根据“四步学习法导学单”进行自学,学生的学习效果非常好。课堂上做到了以学定教,立足于学生的学,立足于学生的终生学习和可持续性发展。

  不足的是,在使用导学单进行导学中,对学生的学情了解不透,导致导学单中某些问题的设置起点偏高,拖延了教学时间,最后的练习量过大,这点是在我精心准备教案设计和课件的同时,留下的最大遗憾。

加法交换律教学反思4

  在教学加法交换律时我采用了情境导入—探究新知—反馈练习三个教学环节,情境导入环节利用课本上李叔叔骑车旅行的情景导入,得出已知条件和问题;探究新知环节,让学生先独立完成,集体交流时发现算式结果相同,用等号连接,得出56+28=28+56,然后又让学生仿照举例,最后引导学生得出规律;反馈练习环节学生的积极性很高,本节课的教学非常顺利,轻松完成教学任务。但我觉得本节课的知识太少,能不能把加法交换律和乘法交换律合并成一节课讲解呢,在以后教学本节课时我准备在“交换律”这节课进行以下几个方面尝试。

  (1)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整。另外在材料呈现的顺序上,改变了教材编排的顺序:先教学加法交换律和加法结合律,然后教学乘法交换律交换律和结合律,而是同时呈现,同时研究。因为当学生在已有认知结构中提取与新知相关的有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充分做到了尊重学生的认知规律。

  (2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课我首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子来说明吗?这样利用捕捉到的“生活现象”引入新知,使学生对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了学生大胆探索的兴趣。

  (3)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律是人教版小学数学第八册第三单元的内容,先教学加法交换律和结合律,然后是交换律和结合律的应用,接着乘法交换律和乘法结合律,乘法分配律。而在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课的重点应放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。

加法交换律教学反思5

  世界著名数学家和数学教育家弗赖登塔尔指出,数学的学习方法是实行再创造,也就是由学生本人把要学习的东西发现或创造出来。根据这个指导思想,我认为数学教学在关注知识和技能的同时更应注重学生“亲历性”、落实教学“主体性”,关注学生“学数学”、“做数学”的过程。以上教学过程打破了传统的课堂教学结构,注重培养学生的创新意识和实践能力。整个过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。

  1.注重教学目标的整合化。

  根据时代的发展和要求,数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标*衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。

  在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。

  2.注重教学内容的现实性。

  教学时,应根据学生的年龄特征和教学要求,从学生熟悉的情境和已有的知识出发进行调适,开展教学活动”。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。

  (1)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律在浙教版小学数学教材中分别安排在第七册和第八册,而在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的`位置来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。

  (2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课教师首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子来说明吗?这样利用捕捉到的“生活现象”引入新知,使学生对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了学生大胆探索的兴趣。

  (3)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整。本节课在教学材料的处理时,改变了把课本当作“圣经”的现象,让学生参与教学材料的提供与组织,给学生创设了一个创新和实践的学习环境,既激发了学生的学习动机和探究欲望,又使学生的身心得到了一种成功的体验。另外在材料呈现的顺序上,本节课改变了教材编排的顺序:在第七册教学加法交换律,在第八册教学乘法交换律,而是同时呈现,同时研究。因为当学生在已有认知结构中提取与新知相关的有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充分做到了尊重学生的认知规律。

  3、注重教学过程的探索性。

  在“教学要求”中,增加了“通过观察、操作、猜测等方式,培养学生的探索意识”的内容;在“教学应注意的几个问题”中,专门把“重视学生的探索意识和实践能力”作为一个问题进行论述,要求教师“依据学生的年龄特征和认知水*,设计探索性和开放性的问题,给学生提供自主探索的机会,让学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中,理解数学问题的提出,数学概念的形成和数学结论的获得,以及数学知识的应用”,“形成初步的探索和解决问题的能力”

  在交换律这节课中,教师鼓励学生根据自己的“数学现实”理解情景,发现数学,打破封闭式的教学过程,构建“问题——探究——应用——新问题——再探究”的开放式学习过程,体现学生是学习的主人,教师是教学活动的组织者、引导者和参与者。

  (1)创设生活情境,激励探究欲望。本节课,首先引导学生用“变与不变”的眼光观察身边的教学环境,进而采撷现实生活中的一种有趣现象,让学生初步感知问题,从而引起认知冲突,激发学生探究欲望。这样安排,既帮助学生消除了思维上的心理障碍,为新知的获得切实做好了心理和知识、能力的双重准备,又达到了激活学生原有知识、引起注意期待、诱发学生参与意识的目的,使教学始终处于学生思维的最近发展区之中。

  (2)引导学生探索,开发创造潜能。教师巧妙地利用生活原型,激活与新知学习有关的旧知,引导学生从原来的知识库中提取有效的信息,通过自组算式,整理、观察、分类、交流,逐步抽象概括、形成结论,并进行应用。在这个过程中,通过学生探索与创造、观察与分析、归纳与验证、矫正与调换等一系列数学活动,自主发现、自主探索加法交换律和乘法交换律,使学生感受到数学问题的探索性和挑战性,并从中认识到数学思考过程的条理性和数学结论的确定性。

  (3)反思探索过程,体验成功情感。问题解决后,引导学生对探究学习的活动过程进行反思:面对一个实际问题,我们是怎样来解决的?从中提炼出解决问题、获得新知的数学思想方法和有效策略,并自觉地将思维指向数学思想方法和学习策略上,从中获得积极的情感体验。

  (4)提倡教学相长,鼓励开拓创新。在本节课的最后,教师有意识的空出一定时间让学生来质疑问难。一方面让学生对本节课不懂的知识提出疑问,在师生帮助下及时解决;另一方面,让学生提出有价值的问题,既培养了学生提问题的能力,又能使学生的认知心理产生新的“不协调”,形成一个再探究的氛围。

  总之,本节课在教学过程中,突出了知识的系统性,学生的亲历性,尽量培养学生的主体意识,问题让学生自己去揭示,方法让学生自己去探究,规律让学生自己去发现,知识让学生自己去获得。课堂上给学生以充足的思考时间和活动空间,同时给学生表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。

加法交换律教学反思6

  整个教学过程同学从已有的知识经验的实际状态动身,通过质疑、猜测、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了胜利解决数学问题的喜悦或失败的情感。

  1.注重教学目标的整合化。

  根据时代的发展和要求,数学教学的价值目标取向不只仅局限于让同学获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处置好知识性目标和发展性目标*衡与和谐的整合,在知识获得的过程中促进同学发展,在发展过程中落实知识。在“交换律”这节课中,教师在目标领域中设置了过程性目标,不只和同学研究了“交换律”“是什么”,更重要的是让同学体验了数学问题的发生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注同学的学习过程,有意识地引导同学亲历“做数学”的过程。引导同学用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励同学从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了胜利的情感。

  2.注重教学内容的实际性。

  新课标里曾指出,教学时应从同学熟悉的情境和已有的知识动身进行,开展教学活动。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。

  (1)找准教学的起点。对同学学习起点的正确估计是设计适合每个同学自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律在浙教版小学数学教材中分别布置在第七册和第八册,而在过去的学习中,同学对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课教师把重点放在引导同学发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使同学的认识由感性上升到理性。

  (2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课教师首先引导同学用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导同学发生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子来说明吗?这样利用捕获到的“生活现象”引入新知,使同学对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了同学大胆探索的兴趣。

  (3)改进资料的出现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据同学的实际对教材内容进行有目的的选择、补充和调整。本节课在教学资料的处置时,改变了把课本当作“圣经”的现象,让同学参与教学资料的提供与组织,给同学创设了一个创新和实践的学习环境,既激发了同学的学习动机和探究欲望,又使同学的身心得到了一种胜利的体验。另外在资料出现的顺序上,本节课改变了教材编排的顺序:在第七册教学加法交换律,在第八册教学乘法交换律,而是同时出现,同时研究。因为当同学在已有认知结构中提取与新知相关的有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充沛做到了尊重同学的认知规律。

加法交换律教学反思7

  义务教育数学课程标准指出:教师要用教材教,而不是教教材,也就是让我们教师要把握教材的编写意图,根据学生实际,创造性地使用教材。根据这一指导思想我结合本班学生善于动脑,乐于推理,勤于总结的特点,将教材例1和例2合并成一节课展开学习活动。纵观本节课有以下几个特点:

  一、学习问题的产生激发了学生的探究的欲望。

  课堂上我从口算A、B两组竞赛题入手,让学生练习计算,比速度,让学生马上意识到算B组题的速度明显比A组题快,先声夺人,让孩子感受到简便算法的优越,接着教师引导:为什么B组题算得快,这其中蕴含哪些数学知识呢?这一问题马上激起了学生探究的欲望,学习问题的产生将学生自然带入到学习状态中来,激发了学生强烈的探究欲望。

  二、情境的创设发散了学生的数学思维。

  教学新知前我让学生对课题“加法的运算定律”说说自己的理解,学生很自然地想到:我们今天要研究的是加法的一些运算规律,再由贴近学生的生活情境引入主题,让学生自由地提问,学生提出的问题多数是用加法解决的问题,不仅培养了学生发散性的思维,还能让学生提出的问题直奔主题,老师的引导做到了有放有收,从而提高了学习效率。

  三、学法的指导体现了知识建模的过程。

  数学课标指出:在数学教学过程中,教师应注重发展学生模型思想。本节课我注重“授之鱼”,更注重“授之以渔”。先是和学生一起学习了加法的结合律,总结出了四步学习法:提出问题---解决问题---举出例子----总结归纳。建立这样的模型后让学生按照这样的方法展开自学活动。本节课的教学并不是仅仅让学生掌握加法的运算定律,更重要的是要掌握解决问题的方法,培养学生观察、分析、比较、概括的能力。整节课对学生有“扶”又“放”,在教会孩子知识的同时,也教会了孩子的学习方法。这四步学习法对后续一些运算定律的学习,一些规律的推理和验证都用重要的意义。

  四、以学生为主体创造性地使用教材。

  本节课的教学内容如果按教材的编排程序去学习是体现了知识的学习由浅入深,循序渐进。但我觉得学生自学加法结合律有一定的难度,需要教师的引导才能学懂、学透,而加法交换律学生很容易通过老师的“自学提示”展开学习,所以我大胆地对教材的内容进行了调整,先领学生学习加法结合律,而加法交换律我放手让学生根据“四步学习法导学单”进行自学,学生的学习效果非常好。课堂上做到了以学定教,立足于学生的学,立足于学生的终生学习和可持续性发展。

加法交换律教学反思8

  本节课的知识点相对来说比较简单,因此从课堂效果来看学生掌握的还是比较好的。本节课设计了一个让学生自己用喜欢的方式表示加法交换律,两个班的学生在本节课中都能充分的表达自己的意愿,想到了好多不同的方法来表示交换律,这期间当然也有我想要的字母表达式。教学任务全部完成,同时也体现了小组合作和动手操作,这也是本节课我在教学的过程中希望能够完成的教学目标。

  本节课的可取之处仍然是我们继续使用了小组合作的方法,让学生在讨论中得出想要的结果,而且还能得到充分的锻炼,锻炼孩子们能用完整的话表达自己的想法,锻炼他们用标准的数学语言来描述规律等等。本节课中最大的亮点就是这项工作了。

  然而,教学总是有缺憾的,今天的课安排的不是很充实,课程上完了还有将近五分钟的时间,我的设计意图也是这样,想利用这五分钟的时间跟学生一起做一下今天的作业,一方面他们回家以后作业就没有那么多了,另一方面作业中的一些稍难一点的题我也能够做一下指导。但是从另一个侧面又能说明本节课设计的还是不够充实,没有拓展方面的题让学生在课上训练,尤其是对于五班的同学来说,这节课几乎是吃个半饱,如果本节课能针对五班学生的特点再加入一些提高性训练的话,这节课应该会上的更完美,换句话说,本节课中分层教学又体现的不是很充分了。

  总之,如果再次教学本课的时候,应该针对本节课知识点简单的特点有针对性的加入一些拓展的题让学生充分掌握和巩固的 ,这不仅是要体现分层教学,更重要的是让那一部分“没吃饱”的同学得到满足!教学就是教师在打仗,每一场下来都要总结自己的经验为下一场战役做准备,希望能达到百战百胜的目的!

加法交换律教学反思9

  《加法交换律》是人教版四年级下册第三单元第一节概念课,是在学生已经掌握四则运算的基础上进行教学。本节课的教学设计有意识地让学生运用已有经验,亲身经历这一规律的发现过程,同时注重学习方法的渗透,为高年级的学习打下基础。

  作为一堂概念形成课,我们要让学生经历有效地探索过程。通过不断的猜想,不断的论证,最终得出结论。教学中以学生为主体,教师为主导,激励学生动手、动脑、动口积极探究问题。现对本节课的教学总结如下:

  一、“速算比赛”妙入课题

  本节课,以计算题为切入口,精心挑选了相关计算题,让学生通过计算发现所给题的区别与联系,引发学生思考:通过观察这组得数相同的算式,你发现了什么?学生能较快的发现,两个加数交换位置,他们的和不变。同时得到全班同学异口同声的赞同,这是老师提出疑惑:是否所有的两个数相加,交换加数的位置,他们的和不变呢?抛出问题,引出猜想,进而问学生:你还能写出像这样的算式吗?让学生动手写算式,充分经历概念形成的过程,在写的过程中发现问题:这样的算式你能写多少个?“无数个!”紧接着老师追问:“那你能用一个算式概括所有的算式吗?”引导学生探索加法交换律的公式表达。通过汇报、展示,揭示课题。

  二、微课引入,火龙点睛

  在教学中,我提了一个问题:今天所学的《加法交换律》在以前的学习中我们也是否接触到了呢?引导学生回顾旧知,给他们一分钟的思考交流时间,有的同学能够说到一二,有的却一脸茫然,这个时候引入了提前准备好的微视频,其中的配音就是找了本班学生配的。当大家听到熟悉的童声,看到一年级的看图写算式以及三年级的加法验算等,(都用到了加法交换律,只是当时没有把这个概念提出来而已,)豁然开朗,课堂顿时热闹起来。让同学们把前面的旧知和今天的新授结合起来,加深了新知的理解,起到了画龙点睛的效果。

  三、留下悬念,提升迁移

  在课堂最后,我又给孩子们抛出了一个悬念:既然加法有交换律,那减法呢,除法和乘法呢?这个问题不仅引起了学生的兴趣,更为后面的学习埋下了伏笔。我看到学生们不由自主的在本子上写出算式进行验证,说明本节课的数学思想方法已经潜移默化到他们的脑海中。他们能很快的通过举例论证来否定减法和除法没有。“而乘法有吗?在后面的学习中我们将继续探讨这个问题”由此结束本节课。

  总体来说,本节课达到了预期的效果,让加法交换律深入了他们的内心,特别是让他们经历了“提出猜想-举例论证-得出结论”的过程。本节课不仅仅学会了加法交换律,更让他们学会了数学方法,为下节课的加法结合律以及乘法交换律做好了铺垫。更难得可贵的是,学习中不仅仅收获了数学知识,更收获了期间的数学兴趣。

加法交换律教学反思10

  世界著名数学家和数学教育家弗赖登塔尔指出,数学的学习方法是实行再创造,也就是由学生本人把要学习的东西发现或创造出来。根据这个指导思想,我认为数学教学在关注知识和技能的同时更应注重学生“亲历性”、落实教学“主体性”,关注学生“学数学”、“做数学”的过程。以上教学过程打破了传统的课堂教学结构,注重培养学生的创新意识和实践能力。整个过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。

  1.注重教学目标的整合化。

  根据时代的发展和要求,数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标*衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。

  在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。

  2.注重教学内容的现实性。

  教学时,应根据学生的年龄特征和教学要求,从学生熟悉的情境和已有的知识出发进行调适,开展教学活动”。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。

  (1)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的教学过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律在浙教版小学数学教材中分别安排在第七册和第八册,而在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。

  (2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课教师首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?你能举出一个或几个例子来说明吗?这样利用捕捉到的“生活现象”引入新知,使学生对数学有一种亲近感,感到数学与生活同在,并不神秘,同时也激起了学生大胆探索的兴趣。

  (3)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,教师应在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充和调整。本节课在教学材料的处理时,改变了把课本当作“圣经”的现象,让学生参与教学材料的提供与组织,给学生创设了一个创新和实践的学习环境,既激发了学生的学习动机和探究欲望,又使学生的身心得到了一种成功的体验。另外在材料呈现的顺序上,本节课改变了教材编排的顺序:在第七册教学加法交换律,在第八册教学乘法交换律,而是同时呈现,同时研究。因为当学生在已有认知结构中提取与新知相关的有效信息时,不可能像教材编排的有先后顺序之分,而是同时反映,充分做到了尊重学生的认知规律。

  3、注重教学过程的探索性。

  在“教学要求”中,增加了“通过观察、操作、猜测等方式,培养学生的探索意识”的内容;在“教学应注意的几个问题”中,专门把“重视学生的探索意识和实践能力”作为一个问题进行论述,要求教师“依据学生的年龄特征和认知水*,设计探索性和开放性的问题,给学生提供自主探索的机会,让学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中,理解数学问题的提出,数学概念的形成和数学结论的获得,以及数学知识的应用”,“形成初步的探索和解决问题的能力”

  在交换律这节课中,教师鼓励学生根据自己的“数学现实”理解情景,发现数学,打破封闭式的教学过程,构建“问题——探究——应用——新问题——再探究”的开放式学习过程,体现学生是学习的主人,教师是教学活动的组织者、引导者和参与者。

  (1)创设生活情境,激励探究欲望。本节课,首先引导学生用“变与不变”的眼光观察身边的教学环境,进而采撷现实生活中的一种有趣现象,让学生初步感知问题,从而引起认知冲突,激发学生探究欲望。这样安排,既帮助学生消除了思维上的心理障碍,为新知的获得切实做好了心理和知识、能力的双重准备,又达到了激活学生原有知识、引起注意期待、诱发学生参与意识的目的,使教学始终处于学生思维的最近发展区之中。

  (2)引导学生探索,开发创造潜能。教师巧妙地利用生活原型,激活与新知学习有关的旧知,引导学生从原来的知识库中提取有效的信息,通过自组算式,整理、观察、分类、交流,逐步抽象概括、形成结论,并进行应用。在这个过程中,通过学生探索与创造、观察与分析、归纳与验证、矫正与调换等一系列数学活动,自主发现、自主探索加法交换律和乘法交换律,使学生感受到数学问题的探索性和挑战性,并从中认识到数学思考过程的条理性和数学结论的确定性。

  (3)反思探索过程,体验成功情感。问题解决后,引导学生对探究学习的活动过程进行反思:面对一个实际问题,我们是怎样来解决的?从中提炼出解决问题、获得新知的数学思想方法和有效策略,并自觉地将思维指向数学思想方法和学习策略上,从中获得积极的情感体验。

  (4)提倡教学相长,鼓励开拓创新。在本节课的最后,教师有意识的空出一定时间让学生来质疑问难。一方面让学生对本节课不懂的知识提出疑问,在师生帮助下及时解决;另一方面,让学生提出有价值的问题,既培养了学生提问题的能力,又能使学生的认知心理产生新的“不协调”,形成一个再探究的氛围。

  总之,本节课在教学过程中,突出了知识的系统性,学生的亲历性,尽量培养学生的主体意识,问题让学生自己去揭示,方法让学生自己去探究,规律让学生自己去发现,知识让学生自己去获得。课堂上给学生以充足的思考时间和活动空间,同时给学生表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。


《加法交换律和乘法交换律》教学设计3篇(扩展6)

——《交换律》教学反思3篇

《交换律》教学反思1

  整个教学过程打破了传统的课堂教学结构,注重培养学生的创新意识和实践能力。整个过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验到了成功解决数学问题的喜悦或失败的情感。

  1、注重教学目标的整合化

  “交换律”这节课中,我在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验到了数学问题的产生、碰到问题“怎么办”和“如何解决”。花更多时间关注学生学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。

  2、注重教学内容的现实性

  (1)找准教学的起点。在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置来验算加法(乘法),所以,这节课我把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。

  (2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。我首先引导学生用辩证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变的现象在我们的数学知识中有没有呢?举例说明。

  (3)改进材料的呈现方式。教材只是提供了教学的基本内容、基本思路,我在尊重教材的基础上,根据学生的实际对教材内容进行有目的的选择、补充,和调整。让学生参与教学材料的提供与组织,给学生创设了一个创新和实践的学习环境,既激发了学生的学习动机和探究欲望,又使学生的身心得到了一种成功的体验。

  3、注重教学过程的探究性。

  在这节课中,我鼓励学生根据自己的“数学现实”理解情景,发现数学,打破封闭的教学过程,构建“问题——探究——应用——新问题——再探究”的开放式学习过程,体现学生是学生是学习的主人,教师是教学活动的组织者、引导者和参与者。

  (1)本节课,我首先引导学生用“变与不变”的眼光观察身边的教学环境,进而才撷现实生活中的一种有趣现象,让学生初步感知问题,从而引起认知冲突,激发学生的探究欲望。

  (2)引导学生探索,开发创造潜能。我利用生活原型,激活与新知学习有关的旧知,引导学生从原来的知识库中提取有效的信息,通过自组算式,整理、观察、分类、交流,逐步抽象概括、形成结论,并进行应用。

  总之,本节课的感觉比较成功。

《交换律》教学反思2

  一、情境引入。

  师:我们班有男生27人,女生31人,班上一共有多少人?

  生:27+31=58人

  师:我还有一种不一样的方法,你知道吗?

  生:我猜是:31+27=58人

  师:请你们观察一下这两个算式有什么共同点,什么不同?

  生:计算的都是总人数。

  生:两个加数都相同。

  生:和也相等。

  生:两个加数交换了位置。

  师:既然两道算式的和相等,27+31和31+27中间可以用什么符号连接?

  生:等号。

  生(惊喜地):是加(减)法的交换律。

  生:是加法的交换律。

  师板书:加(减)法的交换律。

  二、反复例证,充分感知交换律。

  师:你认为加法交换律是什么样子的?

  生:交换两个加数的位置,和不变。

  师:所有的加法算式都是这样吗?

  生:是的。

  师:口说无凭,你能举例子说明吗?

  师:你认为这样的例子多不多?

  生:很多,都举不完。

  师:你认为怎样举例最好?

  生:一组一组地写。

  生:你写的完吗?

  生:我举有代表性的例子。

  师:什么样的例子有代表性?

  生:一位数举一个,两位数举一个……

  生:还要考虑0的情况。

  生:再举几个和0有关的例子。

  生:我认为如果能找到了一个反例,就说明不是所有的加法算式都有加法交换律(加法交换律不成立),我准备找反例。

  生举例:9+8=8+9

  12+26=26+12

  ……

  0++=0+0

  0+7=7+0

  ……

  0.9+0=0+0.9

  师:这个例子和你们举的例子有点不一样。

  生:它的加数是0。

  生:上面几道算式的加数也是0。

  生:0.9是小数。

  师:同学们举得例子真不少,不仅想到了整数,还想到了小数,这些例子说明了什么?

  生:交换两个加数的位置和不变。

  师:有同学找到反例吗?

  生:找不到。

  生:减法不行,2-1不等于1-2。

  生:减法也有行的:2-2=2-2。

  生:只要有一个反例,就不行。

  师:交换律在减法中成立吗?

  生:不成立(师擦去减)

  生:乘法、除法行。

  师:真的吗?

  生:5*4=4*5

  生:也有不行的(不成立)。

  师:现在请你们举例,认为行的就找行的,认为不行的就找反例。

  (因为有了加法的基础,学生举例的方法都不错)

  生:我认为行的:36*24=24*36

  生:我认为不行:25*24不等于24*25

  生:不对,

  师:请你们帮助解决一下。

  生:25*24=600,24*25=600

  生:我认为行:0*396=396*0

  生:我认为不行:25*4不等于5*24

  生:例子不对,是因数交换位置,又不是两个数交换位置。

  生:25*4=4*25

  生:不计算也可以知道他们的积相等,25*4表示4个25相加,4*25也可以表示4个25相加。

  师:真不错,她从乘法的意义来说明两个乘法算式的积相等。

  生:加法也是这样,虽然交换了两个加数的位置,但两个加数没有变,和也不会变。

  ……

  生:除法不行:6/3不等于3/6

  生:除法也有行的:8/8=8/8

  生:只要有一个不行,就不成立。

  师:通过刚才的举例,你认为交换律在哪些运算中成立?

  生:加法和乘法。

  师:你能完整地表述加法和乘法的交换律吗?

  生:交换两个加数的位置,和不变。

  生:交换两个因数的位置,和不变。

  师板书

  师:你觉得老师写这两句话,难不难写?

  生:难写。

  师:你能不能想一个简单的写法,帮帮我。

  生思考,并尝试写,有些小组小声地讨论起来。

  生:甲数+乙数=乙数+甲数

  生:苹果+香蕉=香蕉+苹果

  生:a+b=b+a

  ……

  紧接着,学生们也分别用文字、图形、字母表示了乘法交换律。

  师:这里的符号可以代表哪些数?比如a和b?

  生:代表0、1、2、3、4……

  生:代表1000、10000……

  生:代表任何数。

  师:你能完整地说一说加法和乘法交换律吗?

  生:交换任何两个加数的位置,和不变。

  生:交换任何两个因数的位置,和不变。

  生:可以合成一句话:交换任意两个加数(因数)的位置,和(积)不变。

  三、运用中升华认识。

  师:学习加法、乘法交换律有什么作用,过去我们用过吗?

  生:在二年级学过,看一幅图写两个加法算式。

  生:一句乘法口诀可以计算两道乘法算式。

  生:验算时用过。

  生:加法可以用交换两个加数的位置来验算,乘法也可以。

  紧接着,学生完成相应的练习。

《交换律》教学反思3

  《加法交换律》是义务教育教科书(人教版)数学四年级下册P17:例1的内容。运算定律是本册书中的重点,也为以后的简便运算打下基础。

  本节教学我利用学生的举例、观察、发现、归纳,总结出加法交换律,环节设计合理,也激发了学生的学习积极性。

  在情境导入环节,我利用播放成语故事《朝三暮四》引起学生对新知识的求知欲。让学生从故事中找信息,自己提出问题,然后学生解决问题。从故事中得到3+4=7(个)和4+3=7(个)这两个算式。接着我说:“对,两种吃法不同,结果猴子每天吃到的栗子的总数量是同样多的。”这就是今天要研究的"内容,加法交换律。

  在探究规律环节,我利用李叔叔骑车旅行的情景图。让学生从情景图中找信息,自己提出问题,然后学生解决问题。 根据学生回答板书:40+56=96(千米)或 56+40=96(千米)然后让学生说出这两个算式的相同点和不同点。学生回答,相同点是每组算式中有两个加数,而且两个加数相同,左右两边的加数的和相等。不同点是两个加数交换了位置。然后问:“这两个算式的和相等,这两个算式之间有什么关系?可以用什么符号连接?”学生从中回答,每组算式中有两个加数,而且两个加数相同,只是交换了位置,而得到40+56=56+40这个等式。我接着问:“你能照样子再举几个例子吗?”调动了学生的积极性。学生从这些例子可以得出什么规律?请用最简洁的话概括出来,学生回答:两个数相加,交换加数的位置,和不变,这叫做加法交换律。如果用字母a、b表示两个加数,则可以写成:a+b=b+a我问:“你能用自己喜欢的方式来表示加法交换律吗”然后学生回答特别多,像甲数+乙数=乙数+甲数,▲+=+▲等等特别多。虽然有的式子不够完美,但充分说明学生已经掌握了加法交换律。

  在巩固练习环节,我设计了多种多样的练习题,先是基础练习,还有拔高练习,层层深入,学生学得也兴趣盎然。

  总结本节课,整节课环节紧凑,利用多媒体课件也节省了大量时间,有充分的时间练习。由于本节课内容不多,也很简单,学生的注意力也很集中,学生发言积极,所以也很好的完成了教学任务,学生也完成了学习任务。

  但是本节课也有很多不足之处:1、在巩固环节,我出示了三道加法算式,但是有的学生利用减法验算,这样是不符合要求的。这时我应该让学生说出为什么不行,不应该老师解释,2、最后填表,由于时间关系我没给学生足够的时间,问题解决的不太理想。


《加法交换律和乘法交换律》教学设计3篇(扩展7)

——《加法交换律和结合律》说课稿3篇

《加法交换律和结合律》说课稿1

  加法的交换律和结合律一课在人教版和苏教版中都是布置在四下上这个内容,在现在的苏教国标版教材也是布置在四年级。加法的交换律和结合律一课是属于第二学段中的数的运算中的一个重要内容。是在同学经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。同学从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律结合律的基础。

  新教材布置这两个运算律都是从同学熟悉的实际问题的解答引入,让同学通过观察、比较和分析,找到实际问题不同解法之间的一起特点,初步感受运算规律。然后让同学根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示动身现的规律,笼统、概括出运算律。教材有意识地让同*用已有经验,经历运算律的发现过程,让同学在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。新教材教学目标:

  1、知识技能目标:

  使同学理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。使同学在学习用符号、字母表示自身发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高笼统思维能力。

  2、过程方法目标:

  使同学经历探索加法交换律和结合律的过程,通过对熟悉的实际问的解决,进行比较和分析,发现并概括出运算律。

  3、情感、态度、价值观目标:

  使同学在数学活动中获得胜利的体验,进一步增强对数学的兴趣和信心,初步形成独立考虑和探究问题的意识、习惯。

  教学重点:使同学理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

  教学难点:使同学经历探索加法结合律和交换律的过程,发现并概括出运算律。

  旧教材教学目标:

  1、使同学理解并掌握加法交换律和结合律。

  2、使同学理解和掌握加法交换律与加法结合律的异、同点,和其特点。

  3、能利用加法的交换律进行加法的验算。

  4、培养同学观察、概括、分析推理的能力。

  教学重点:

  引导同学概括、总结加法的加法交换律和结合律,会用字母表示。

  教学难点:

  在理解的基础上概括加法交换律和结合律,并能用文字和字母表示。

  从新旧教材的目标比较以和例题设计中可以看出两者的"目标定位是不一样的。

  1.旧教材的目标比较单一,主要的目标是知识技能方面的目标,如能口头表达加法交换律和结合律的意义,能用字母去表示,并会运用于验算。新教材的目标设定不只仅体现了知识技能方面的目标,更多的体现了过程和方法,情感态度方面的目标以和对于数学思想方法(不完全归纳法,符号感)的渗透。目标的设定是使各项目标与具体的学习相结合起来,成为一个有机的整体。

  2.旧教材的目标体现不出教学的方法和同学的学法,而新教材的教学目标中能体现出一些具体的做法,如通过对熟悉的实际问的解决,经历探索加法交换律和结合律的过程,数学活动过程始终作为重点贯穿与教学中。

  韩玲老师在上加法的交换律和结合律这课时,也充沛考虑到了新旧教材目标定位的不同。从课堂的引入韩老师就以最贴近生活的实际体育要闻十运会金牌数为题,一下子激起了同学学习的“兴奋点”,很自然的进入了后面的学习。在同学提出一些列的数学问题并列出算式之后,教师开始引导同学比较和分析这两道算式之间有什么相同的地方?有什么不同的地方?可以用等号连接吗?问:观察黑板上的这三道等式,你发现了什么规律?问:是不是其他的数之间也存在这种规律呢?请你再举一个这样的例子验证验证。举了这么多的例子,你找到规律了吗?这个规律用语言叙述比较长,你能够用自身喜欢的方式把这个规律简单明了地表达出来吗?(生口述,教师板书)在这样一个教师引导,同学进行比较、分析、举例、验证,表达的过程中,充沛发挥了同学主体的作用,也让同学感受到了发现规律的一般过程,从而达到经历过程,讨论提升,归纳概括的目的。结合律的教学过程则更多的体现了同学自主探索,推导,验证的一个完整过程。

  新教材的目标设定和教学过程,更多的体现了动态生成,寓数学考虑,探究,发现于一体的数学活动过程,教师只有掌握住了这个精髓才干去上好课,发展同学的综合能力。


《加法交换律和乘法交换律》教学设计3篇(扩展8)

——加法结合律教学设计3篇

加法结合律教学设计1

  教学目的:

  1.使学生理解和掌握加法结合律,并应用结合律使计算简便。

  2.培养学生观察、归纳、概括能力以及思维灵活性。

  3.对学生进行"具体问题具体分析"的辨证唯物主义的教育。

  教学重点:

  理解并掌握加法结合律。

  教学过程:

  一、情景引入

  1.同学们,暑假期间,我们学校举行军事夏令营活动,三年级一班有营员42人,二班有营员45人,三班有营员55人,请你计算一下,这三个班共有营员多少人?

  (1)全班试做,指名板演。

  (2)集体订正:42+45+55=142(人)

  2.师:这道实际应用题同学们做得都很好,老师这还有一道例题(出示例2),同学们看能不能用两种方法解答?

  [说明:从近期生活实际入手,使学生置于情景之中,便于激发学生学习兴趣,同时为学习例2连加法做好铺垫。]

  二、尝试探究构建模型

  1.出示例2。

  例2.四年级一班有48人,二班有50人,三班有49人,三个班共有多少人?(用两种方法解答)

  (1)全班试做。

  (2)指名板演。

  (3)做完的同学自己先说一说每种方法你是先算什么?再算什么?结果怎样?

  (4)师:由两种算法的结果相间,可以看出这两个算式有什么关系?这种关系可以怎样表示?(同桌相互说一说,然后指名回答)教师板书如下:(48+50)+ 49=48+(50+49)

  2.谁能编一道像例2这样的应用题,(指2至3名学生编)然后全班同学用两种方法解答。

  3.观察下面每组的两个算式,它们有什么样的关系?(投影出示)

  (12+13)+14○12+(13+14)

  (320+150)+230○320+(150+230)

  [说明:通过编题解答,使学生初步感知加法结合律,为后面归纳概括打下基础。]

  4.归纳概括加法结合律。

  (1)从黑板和投影上的算式同学们发现了什么规律?(以小组为单位说一说)

  (2)指名回答发现了什么规律。

  (3)教师准确口述规律,然后出示加法结合律内容。三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。我们把这样的规律叫做加法结合律。

  (揭示并板书课题:加法结合律)

  (4)全班整体感知加法结合律。(齐读)

  [说明:由小组到个人可以从不同的角度不同的侧面发散学生的思雄,培养学生归纳概括能力。]

  5.学习加法结合律字母公式。

  (1)自学(a+b)+c=a+(b+c)

  (2)弄清a、b、c的意思。

  6.做一做。

  根据运算定律在下面的□里填上适当的数。

  (25+68)+32=25+(□+□)

  130+(70+4)=(130+□)+□

  7.探究复习题的另一种简便算法。

  学习了加法结合律,同学们想一想:复习题怎样计算更为简便一些?

  42+45+55=42+(45+55)

  [说明:学以敢用,强化简算意识。]

  8.小结:加法结合律对于我们今后的学习很有帮助,希望同学们在理解的基础上切实掌握好。

  9.质疑:还有不明白的问题吗?

  [说明:清除练习中的障碍与疑点,使学生真正学懂会用。]

  三、解决应用

  1.应用加法的交换律和结合律,可以使一些计算简便。

  2.学习例3.计算480+325+75

  (1)同学们观察这道题,怎样计算比较简便?

  (2)全班试做,指名板演。

  (3)集体订正,并指名说出这样算的根据。

  3.学习例4.计算325+480+75

  (1)以小组为单位讨论一下,例4怎样算比较简便?与例3有什么不同?应用了什么运算定律?

  (2)全班试做,指名板演。

  (3)集体订正,说出计算时应用了什么运算定律?

  [说明:把两道例题放在解决应用这个环节,有利于培养学生运用所学知识解决问题的能力。]

  4.问:我们在以前学习过程中有什么地方应用过加法结合律?

  5.练:(做一做)

  137+31+63怎样算比较简便?用了什么运算定律?

  6.读:阅读教材第14一15页,看看还有什么地方不清楚?

  7.结:这节课我们学习了加法结合律,并应用运算定律进行了简便运算,希望同学们在今后计算时,要根据题目特点,灵活运用运算定律,使计算简便。

  [说明:对学生进行具体问题具体分析的思想教育。]

  四、综合练习

  1.根据运算定律,在下面的□里填上适当的数。

  369+258+147=369+(□+147)

  (23+47)+56=23+(□+□)

  654+(97+a)=(654+□)+□

  [说明:巩固结合律,打好基础。]

  2.在符合加法结合律的等式后面打"√"号。

  a+(20+9)=(a+20)+9 ( )

  △+(○+b)=(△+□)+b ( )

  (10+20)+30+40=10+(20+30)+40 ( )

  3.有一天,小明爸爸对小明说:你从1数到100,小明刚数完,爸爸便说出了这 l00个数的结果是5050,你能帮小明说明为什么算得这么快吗?

  l+2+3+4+5+?+99+100=5050

  [说明:培养学生思维灵活性,防止思维定势。]

  4.用简便方法计算下面各题,说一说是怎样应用运算定律的?

  91+89+1185+41+15+59

  168+250+32135+49+65+24+11

  [说明:巩固例题,打好基础。]

  5.应用加法运算定律,你能很快算出下面两个算式的和吗?

  1+3+5+7+??+17+19=

  2+4+6+8+??+18+20=

  [说明:进一步培养学生思维灵活性创造性以及较高的抽象逻辑思维能力。]

  五、全课总结

  通过这节课的学习,你有哪些新的收获?

  《加法结合律》导学案

  【知识梳理】

  1、加法结合律:三个数相加,先把前两个数相加,再与第三个数相加;或者先把后两个数相加,再与第一个数相加,它们的和不变。字母表示:(a+b)+c=a+(b+c)

  2、减法的性质:一个数连续减去两个数,可用这个数减去两个数的.和。字母表示:a-b-c=a-(b+c)

  【拓展提高】

  怎样简便怎样算?

  169-247+231-53 9+99+999+9999 567-(245-123)

加法结合律教学设计2

  教材简析:

  加法结合律这部分内容是在加法意义的基础上进行教学的,是继加法交换律之后的加法第二个运算定律,学好加法结合律,对于加法的简便运算,提高计算速度和准确程度很有帮助。

  教学目的:

  1。使学生理解和掌握加法结合律,并应用结合律使计算简便。

  2。培养学生观察、归纳、概括能力以及思维灵活性。

  3。对学生进行"具体问题具体分析"的辨证唯物主义的教育。

  教学重点:理解并掌握加法结合律。

  教学难点:加法结合律的推导。

  教学过程

  一、激情导入

  1、导入课题:口算下面两题50+70+30 240+105+95

  说说你是怎样算的,针对先算70+30和105+95提出质疑:这样算对吗?有什么依据吗?这节课我们就来学习加法结合律。板书课题:加法结合律

  2、明确目标:出示学习目标,齐读一次。

  3、效果预期:关于加法计算,我们已经有了那么多的经验,这些经验能帮助我们很好的认识加法结合律。

  二、民主导学

  任务一、认识加法结合律

  1、任务呈现:

  (1)、出示例2主题图,学生说图上的信息并提问,学生对提出的题进行解答,师引导学生研究问题“这三天一共骑了多少千米?”请学生自己尝试列式,并想想为什么这样列式,教师巡视指导。学生回答,教师有意识地板书,并说出自己的想法。

  (88+104)+96=288(千米) 88+(104+96) 88+104+96 104+96+88

  再针对这两个算式开展研究:(88+104)+96 88+(104+96)

  (2)、猜一猜:这两个式子相等吗?怎样证明?

  观察思考:比较两个算式,什么变了?什么没变?

  通过这两个式子,你作什么猜想?怎样证明你的想法?

  2、自主学习

  小组合作探究,按照任务要求认真完成。

  3、展示交流

  说说你有什么猜想?怎样证明你的想法?

  学生自己归纳出“三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。”

  任务二、能用符号表示加法结合律。

  1、任务呈现:你会用符号表示加法结合律吗?

  2、自主学习:独立完成。

  3、展示交流:展示学生的各种表示方法,重点介绍图形表示法和字母表示法。

  任务三、会运用加法结合律进行简便计算。

  1、任务呈现:你会用加法结合律进行简便计算吗?

  出示题组,请学生独立完成。

  A、用简便方法计算下面各题。

  (1)32+93+68 (2)154+46+79+121

  B、你能在( )里填上合适的数吗?

  96+35=35+(45+36)+64=45+( + )

  560+(140+70)=( + )+

  2、自主学习:独立完成。

  3、展示交流。

  三、检测导结

  1、出示检测题,要求8分钟内独立完成。

  ①、你能在横线上填出合适的数吗?

  (45+36)+64=45+(36+□)

  (72+20)+□=72+(20+8)

  560+(140+70)=(560+□)+□

  ②、你能把得数相同的算式连一连吗?

  ⑴ 72+16 A、( 75+25)+48

  ⑵ 45+(88+12) B、 16+72

  ⑶ 75+(48+25) C、(45+88)+12

  2、出示正确答案,同桌互相检查,指出其中的错误并改正。

  3、反思总结:你有什么新的收获?有什么想和大家交流一下吗?

  让学生回顾今天所学的内容,并将其内化为自己的知识。

  四、板书设计:

  加法结合律

  (88+104)+96 88+(104+96)

  =192+96 =88+200

  =288 =288

  (88+104)+96 = 88+(104+96)

  (a+b)+c=a+(b+c)


《加法交换律和乘法交换律》教学设计3篇(扩展9)

——加法交换律和结合律教学反思3篇

加法交换律和结合律教学反思1

  加法的运算定律是运算体系中的普遍规律。为了让学生能够理解并掌握这一规律,以便为今后的应用服务。我在教学中从学生的已有知识经验的实际状态出发,通过抽象建模,大胆猜测,操作验证,合作总结这四个环节,让学生能够理解加法运算定律的含义,并从过程中体验成功的喜悦或失败的情感。

  本课我把凑整简算的思想贯穿始终,让学生从学习中体验选择简便的方法是学习的最好途径。对于小学生来说,运算定律的理解与运用是培养和发展学生抽象的极好时机。本节课,我引导学生在知识的形成过程中提升学生的思维能力,在课堂上充分调动学生积极性,让孩子们大胆猜想,举例验证、得出结论。纵观本课教学主要有以下几个特点:

  1、在复习引用中,巩固学生的思维基础。

  通过一组口算练习,让学生明确能够凑整十或整百数的两个数加起来比较简便,这个为后面学习结合律打下基础。

  2、大胆猜想,自主探究,培养学生独立思考的能力。

  在教授新课的过程中,我通过提问、设疑,让学生观察—猜测—举例—验证四个环节,同时通过小组合作得出结论。这样既培养了学生的抽象概括能力,同时让学生的思维得到了有效的训练和发展。

  3、多层次的巩固练习,有效提升学生的思维。

  习题设计能有效促进学生思维的发展,本节课在习题设计中,一共设计了四个环节:①基本练习(填空)②变式练习(判断)③巩固练习(计算)④发展提高等。让学生通过练习巩固本课所学内容。

  在教学中也存在以下不足:

  1加法结合律学习在教学中所占比率应加大,学生在学习中还有疑虑,没有学透。

  2、整堂课在时间安排上有些前松后紧,在加法交换律上时间过长,练习的时间相应较短,显得后面在练习中有些仓促。

  3、教师的语言过于*化,不适于中年级学生的年龄。

加法交换律和结合律教学反思2

  课程标准提出“让学生经历有效地探索过程”。教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察猜想——举例验证——得出结论”这一数学学习全过程。基于以上理念本节课的教学我注意从教材出发,理解教材所要达到的教学目标,创造性地使用教材,调整了教材的知识结构,真正做到用教材教,而不是教教材。充分发挥出教师的主导性、学生的主体性。本节课打破传统的课堂教学结构,注重学生观察、比较和分析能力的培养,让学生从已有的生活经验出发,根据已有经验自主探索知识的形成过程。课堂上关注学生的个人体验,满足的学习需求,强化学生的积极情感,使学生不断获得成功的体验。我本着“以人为本,关注学生”的教学思想,试图建立“提出问题——解决问题——举出例子——总结归纳”的基本教学模式,让学生展开自主学习活动,学生在建模的教学活动中找到了数学学习的方法,使传统的“指导接收式”转变为“自主探究式”,充分体现课程改革的教学思想。 纵观本节课突出了以下几个特点:

  一、学习问题的产生激发了学生的探究的欲望。

  课堂上我从口算A、B两组竞赛题入手,让学生练习计算,比速度,让学生马上意识到算B组题的速度明显比A组题快,先声夺人,让孩子感受到简便算法的优越,接着教师引导:为什么B组题算得快,这其中蕴含哪些数学知识呢?这一问题马上激起了学生探究的欲望,学习问题的产生将学生自然带入到学习状态中,激发了学生强烈的探究欲望。

  二、情境的创设发散了学生的数学思维。

  教学新知前我让学生对课题“加法的运算定律”说说自己的理解,学生很自然地想到:我们今天要研究的是加法的一些运算规律,再由贴近学生的生活情境引入主题,让学生自由地提问,学生提出的`问题多数是用加法解决的问题,不仅培养了学生发散性的思维,还能让学生提出的问题直奔主题,老师的引导做到了有放有收,从而提高了学习效率。

  三、学法的指导体现了知识建模的过程。

  数学课标指出:在数学教学过程中,教师应注重渗透建模的思想。本节课我注重“授之鱼”,更注重“授之以渔”。先是和学生一起学习了加法的结合律,总结出了四步学习法:提出问题---解决问题---举出例子----总结归纳。建立这样的模型后让学生按照这样的方法展开自学活动。本节课的教学并不是仅仅让学生掌握加法的运算定律,更重要的是要掌握解决问题的方法,培养学生观察、分析、比较、概括的能力。整节课对学生有“扶”又“放”,在教会孩子知识的同时,也教会了孩子的学习方法。这四步学习法对后续一些运算定律的学习,一些规律的推理和验证都用重要的意义。

  四、以学生为主体创造性地使用教材。

  本节课的教学内容如果按教材的编排程序去学习是体现了知识的学习由浅入深,循序渐进。但我觉得学生自学加法结合律有一定的难度,需要教师的引导才能学懂、学透,而加法交换律学生很容易通过老师的“自学提示”展开学习,所以我大胆地对教材的内容进行了调整,先领学生学习加法结合律,而加法交换律我放手让学生根据“四步学习法导学单”进行自学,学生的学习效果非常好。课堂上做到了以学定教,立足于学生的学,立足于学生的终生学习和可持续性发展。

  不足的是,在使用导学单进行导学中,对学生的学情了解不透,导致导学单中某些问题的设置起点偏高,拖延了教学时间,最后的练习量过大,这点是在我精心准备教案设计和课件的同时,留下的最大遗憾。


《加法交换律和乘法交换律》教学设计3篇(扩展10)

——加法交换律教学反思

加法交换律教学反思

  身为一名人民教师,我们要有一流的教学能力,对学到的教学新方法,我们可以记录在教学反思中,教学反思应该怎么写呢?以下是小编帮大家整理的加法交换律教学反思,仅供参考,希望能够帮助到大家。

加法交换律教学反思1

  《加法交换律》是义务教育教科书(人教版)数学四年级下册P17:例1的内容。运算定律是本册书中的重点,也为以后的简便运算打下基础。

  本节教学我利用学生的举例、观察、发现、归纳,总结出加法交换律,环节设计合理,也激发了学生的学习积极性。

  在情境导入环节,我利用播放成语故事《朝三暮四》引起学生对新知识的求知欲。让学生从故事中找信息,自己提出问题,然后学生解决问题。从故事中得到3+4=7(个)和4+3=7(个)这两个算式。接着我说:“对,两种吃法不同,结果猴子每天吃到的栗子的总数量是同样多的。”这就是今天要研究的内容,加法交换律。

  在探究规律环节,我利用李叔叔骑车旅行的情景图。让学生从情景图中找信息,自己提出问题,然后学生解决问题。 根据学生回答板书:40+56=96(千米)或 56+40=96(千米)然后让学生说出这两个算式的相同点和不同点。学生回答,相同点是每组算式中有两个加数,而且两个加数相同,左右两边的加数的和相等。不同点是两个加数交换了位置。然后问:“这两个算式的和相等,这两个算式之间有什么关系?可以用什么符号连接?”学生从中回答,每组算式中有两个加数,而且两个加数相同,只是交换了位置,而得到40+56=56+40这个等式。我接着问:“你能照样子再举几个例子吗?”调动了学生的积极性。学生从这些例子可以得出什么规律?请用最简洁的话概括出来,学生回答:两个数相加,交换加数的位置,和不变,这叫做加法交换律。如果用字母a、b表示两个加数,则可以写成:a+b=b+a我问:“你能用自己喜欢的方式来表示加法交换律吗”然后学生回答特别多,像甲数+乙数=乙数+甲数,▲+=+▲等等特别多。虽然有的式子不够完美,但充分说明学生已经掌握了加法交换律。

  在巩固练习环节,我设计了多种多样的练习题,先是基础练习,还有拔高练习,层层深入,学生学得也兴趣盎然。

  总结本节课,整节课环节紧凑,利用多媒体课件也节省了大量时间,有充分的时间练习。由于本节课内容不多,也很简单,学生的注意力也很集中,学生发言积极,所以也很好的完成了教学任务,学生也完成了学习任务。

  但是本节课也有很多不足之处:1、在巩固环节,我出示了三道加法算式,但是有的学生利用减法验算,这样是不符合要求的。这时我应该让学生说出为什么不行,不应该老师解释,2、最后填表,由于时间关系我没给学生足够的时间,问题解决的不太理想。

加法交换律教学反思2

  在数学中,研究数的运算,在给出运算的定义之后,最主要的基础工作就是研究该运算的性质。在运算的各种性质中,最基本的几条性质,通常称为“运算定律”。在加法和乘法的五条运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石”。在前面的学习中,学生已经接触到了反映这五条运算定律的大量例子,特别是对于加法、乘法的交换性和结合性,学生已经有了一定的认识基础。

  成功之处:

  1、整合教材内容,便于形成完整的认知结构。在以往教学中,都是按照教材的编排程序,按部就班,首先教学加法运算定律的教学,再进行乘法运算定律的教学,最后对比加法、乘法运算定律之间的联系和区别。虽然感觉教学有条不紊,但是总感觉缺失点什么,总感觉有这样一双手在禁锢自己的思想。如何让教学更能适应新形势下课改教学的要求,以学生为本,顺应学生认识发展需求,减轻学生背诵记忆的难度。因此在今年的教学中,我大胆改变了教材的编排程序,改变为加法、乘法交换律放在一课时进行教学,加法、乘法结合律也是如此。通过教学,有利于学生感悟知识之间的内在联系和区别,学生在理解的基础上,非常轻松的认识了加法、乘法交换律,记忆非常深刻牢固。

  2、经历“形成猜想、举例验证”的完整真实的过程,感悟数学研究的一般方法。在教学中,由故事“朝三暮四”引入,引发学生猜想,通过举例验证得出:两个加数交换位置,和不变的结论,然后又再次引发学生从结论进行猜想,让学生不仅知道从个别特例中形成猜想,并举例验证,是一种获取结论的方法。但有时,从已有的结论中通过适当变换、联想,同样可以形成新的猜想,进而形成新的结论,也是一种非常好的获取结论的方法。通过结论引发猜想,学生很自然列举了例子进行证明,从而得出在乘法中,两个因数交换位置,积不变的结论。结论的得出顺其自然,水到渠成,真实感悟到了数学研究的一般方法。

  不足之处:

  习题的处理欠妥当。练习五1题只是要求学生将计算结果填入表中,没有让学生说说表中数的规律:可以以加号所对的那条对角线为对称轴,对应位置上的两数相等。这样在计算中可以利用这个规律,算出对角线及上半部分或下半部分,另一半可以照抄。

  再教设计:

  1、注重习题的备课,减少低效教学流程。

  2、注重对加法、乘法交换律的证明过程,可以通过集合图和点子图,让学生不仅要知其然,还要知其所以然。

加法交换律教学反思3

  (1)通过模仿举例,渗透等量代换的数学方法。

  学生根据模仿,学会了根据结果相等,将两个算式写成恒等的方法,这对于他们来说是一个新知识,其实也就是在经历等量代换的过程。而这一数学方法对接下来要学习其它各种运算定律,及运用定律进行简便运算,列方程解应用题等都十分重要。

  (2)通过对大量数学事实的对比,发现其中的规律,学习不完全归纳发。

  学生在独立举例后,在全班范围内交流发现的规律,得出结论:不管两个加数的位置怎么交换,它们的和都不会改变。师引导:同学们所举的所有例子都能写出这样的结论,可见我们的四则运算中有一个规律,谁能把这个规律准确地概括一下?……从个别到一般,把对特例的发现上升为具有普遍意义的规律和性质,这就是小学阶段的“不完全归纳法”,让学生经历这一归纳过程,体验结论的科学性。

  失:本节课的不足之处就是对处理“用字母表示定律”这一环节有些不足。在学生例举字母表示定律后总结出用a+b=b+a公式来表示定律后,没有进一步拓展,如问:三个数可以怎样表示呢?这个规律还适用吗?这样环节设计,会让学生对字母表示运算定律更为熟悉,从而培养数学思想,更能强化目标。

  在今后的数学中,注意强化本节课的重难点,并针对重难点进行数学思想的渗透与拓展,尤其对稍差的学生更应该重复强化,尽量让每一个孩子都学会。

加法交换律教学反思4

  整个教学过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。

  1.注重教学目标的整合化。

  根据时代的发展和要求,数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标*衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。

  2.注重教学内容的现实性。

  新课标里曾指出,教学时应从学生熟悉的情境和已有的知识出发进行,开展教学活动。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。

  (1)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律在浙教版小学数学教材中分别安排在第七册和第八册,而在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置

  来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。

  (2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课教师首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变。

加法交换律教学反思5

  义务教育数学课程标准指出:教师要用教材教,而不是教教材,也就是让我们教师要把握教材的编写意图,根据学生实际,创造性地使用教材。根据这一指导思想我结合本班学生善于动脑,乐于推理,勤于总结的特点,将教材例1和例2合并成一节课展开学习活动。纵观本节课有以下几个特点:

  一、学习问题的产生激发了学生的探究的欲望。

  课堂上我从口算A、B两组竞赛题入手,让学生练习计算,比速度,让学生马上意识到算B组题的速度明显比A组题快,先声夺人,让孩子感受到简便算法的优越,接着教师引导:为什么B组题算得快,这其中蕴含哪些数学知识呢?这一问题马上激起了学生探究的欲望,学习问题的产生将学生自然带入到学习状态中来,激发了学生强烈的探究欲望。

  二、情境的创设发散了学生的数学思维。

  教学新知前我让学生对课题“加法的运算定律”说说自己的理解,学生很自然地想到:我们今天要研究的是加法的一些运算规律,再由贴近学生的生活情境引入主题,让学生自由地提问,学生提出的问题多数是用加法解决的问题,不仅培养了学生发散性的思维,还能让学生提出的问题直奔主题,老师的引导做到了有放有收,从而提高了学习效率。

  三、学法的指导体现了知识建模的过程。

  数学课标指出:在数学教学过程中,教师应注重发展学生模型思想。本节课我注重“授之鱼”,更注重“授之以渔”。先是和学生一起学习了加法的结合律,总结出了四步学习法:提出问题---解决问题---举出例子----总结归纳。建立这样的模型后让学生按照这样的方法展开自学活动。本节课的教学并不是仅仅让学生掌握加法的运算定律,更重要的是要掌握解决问题的方法,培养学生观察、分析、比较、概括的能力。整节课对学生有“扶”又“放”,在教会孩子知识的同时,也教会了孩子的学习方法。这四步学习法对后续一些运算定律的学习,一些规律的推理和验证都用重要的意义。

  四、以学生为主体创造性地使用教材。

  本节课的教学内容如果按教材的编排程序去学习是体现了知识的学习由浅入深,循序渐进。但我觉得学生自学加法结合律有一定的难度,需要教师的引导才能学懂、学透,而加法交换律学生很容易通过老师的“自学提示”展开学习,所以我大胆地对教材的内容进行了调整,先领学生学习加法结合律,而加法交换律我放手让学生根据“四步学习法导学单”进行自学,学生的学习效果非常好。课堂上做到了以学定教,立足于学生的学,立足于学生的终生学习和可持续性发展。

加法交换律教学反思6

  一、导入部分

  上课伊始,我先说了个牛顿的故事:牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。目的是想告诉学生要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。然后说,随着气候渐渐转凉,学校将组织同学们进行冬季锻炼——跳绳和踢毽。请大家翻开课本,看看从图上可以获得哪些信息,根据这些信息可以提出什么问题。

  反思:自我感觉这样的导入效果不错,吸引了大部分学生的注意力,培养了学生的问题意识。学生能马上提出一些问题。为后面的探究学习做好了铺垫。

  二、探究规律

  在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。我追问,如果一直这样说下去,能说的完吗?(学生马上回答我:不能。)我启发道:这样的等式无穷无尽,在这里肯定有着某种规律,大家想知道吗?(想)好,大家以4人小组为单位,研究这些等式里蕴藏的规律,可以用你们喜欢的方式来表示,但要说明表示的理由。经过一番合作,学生的探究结果也出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;逗号+句号=句号+逗号;a+b=b+a,这时我又让他们用文字叙述这一规律。然后我小结:在很*常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。然后指着板书指出:我们刚才研究的就是加法交换律。接着,让学生用同样的方法探究加法结合律。

  反思:教师是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。这节课我强调学生的发言要大声的说:我们小组的发现是……充分调动他们的自信心和自豪感。

  总的来说,这堂课取得了较好的效果,呵呵,自我感觉良好,不过,也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。

  1、在学生得出了加法交换律时,没有让学生总结一下研究问题的方法,而是直接让他们去研究加法结合律。

  2、对“关注每一位学生”这个问题,没有做到。

加法交换律教学反思7

  本节课的知识点相对来说比较简单,因此从课堂效果来看学生掌握的还是比较好的。本节课设计了一个让学生自己用喜欢的方式表示加法交换律,两个班的学生在本节课中都能充分的表达自己的意愿,想到了好多不同的方法来表示交换律,这期间当然也有我想要的字母表达式。教学任务全部完成,同时也体现了小组合作和动手操作,这也是本节课我在教学的过程中希望能够完成的教学目标。

  本节课的可取之处仍然是我们继续使用了小组合作的方法,让学生在讨论中得出想要的结果,而且还能得到充分的锻炼,锻炼孩子们能用完整的话表达自己的想法,锻炼他们用标准的数学语言来描述规律等等。本节课中最大的亮点就是这项工作了。

  然而,教学总是有缺憾的,今天的课安排的不是很充实,课程上完了还有将近五分钟的时间,我的设计意图也是这样,想利用这五分钟的时间跟学生一起做一下今天的作业,一方面他们回家以后作业就没有那么多了,另一方面作业中的一些稍难一点的题我也能够做一下指导。但是从另一个侧面又能说明本节课设计的还是不够充实,没有拓展方面的题让学生在课上训练,尤其是对于五班的同学来说,这节课几乎是吃个半饱,如果本节课能针对五班学生的.特点再加入一些提高性训练的话,这节课应该会上的更完美,换句话说,本节课中分层教学又体现的不是很充分了。

  总之,如果再次教学本课的时候,应该针对本节课知识点简单的特点有针对性的加入一些拓展的题让学生充分掌握和巩固的 ,这不仅是要体现分层教学,更重要的是让那一部分“没吃饱”的同学得到满足!教学就是教师在打仗,每一场下来都要总结自己的经验为下一场战役做准备,希望能达到百战百胜的目的!

加法交换律教学反思8

  在学校举行的一人一节研究课展示活动中,我执教的苏教版四上《加法交换律和结合律》这一课题,通过活动我收获颇多,现将我的反思呈现如下:

  教学的整体程序是:出示这堂课的学习目标——出示这堂课的自学要求——学生根据自学要求自学、教师巡视发现学生自学中的问题——小组汇报自学结果(优先差生)——纠正、讨论、指导自学结果——小组派代表在班级展示自学成果----师生点评------巩固练习-----知识延伸(拓展)。这样的设计,生生之间积极互动,师生之间互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。这节课我强调学生的发言要大声地说:我们小组的发现是……充分调动他们的自信心和自豪感。

  具体做法是:

  一、学生经历有效地探索过程。在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察发现——举例验证——得出结论”这一数学学习全过程。教学这两个运算律都是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。我有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。

  二、注意数学学习方法的渗透。加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了“观察发现——举例验证——得出结论”的学习过程,在此基础上,再让学生探索加法结合律,教师加以适当的引导,为学生提供足够的自主探索的时间和空间,学生将已有学习方法渗透到探索加法结合律中,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。

  三、教学中注意沟通知识间的联系。在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。在教学完加法结合律时,又出示了两道口算题9+7、34+27,让学生回忆口算过程。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。在最后的提高巩固阶段,结合练习为下节课学习加法简便计算垫下了基础。

  总的来说,这堂课取得了较好的效果。通过本课的学习,学生不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律联想到减法、乘法、除法运算中,是否也存在一定的规律呢这一想法。并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。同时,在教学过程中,我也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。总之,在学习洋思经验及实施新课改中,我会不断地反思,及时地总结,适时地改进,充分地完善自我,相互学习,取长补短,不断提高自己的教育教学水*。

加法交换律教学反思9

  《加法交换律》是人教版四年级下册第三单元第一节概念课,是在学生已经掌握四则运算的基础上进行教学。本节课的教学设计有意识地让学生运用已有经验,亲身经历这一规律的发现过程,同时注重学习方法的渗透,为高年级的学习打下基础。

  作为一堂概念形成课,我们要让学生经历有效地探索过程。通过不断的猜想,不断的论证,最终得出结论。教学中以学生为主体,教师为主导,激励学生动手、动脑、动口积极探究问题。现对本节课的教学总结如下:

  一、“速算比赛”妙入课题

  本节课,以计算题为切入口,精心挑选了相关计算题,让学生通过计算发现所给题的区别与联系,引发学生思考:通过观察这组得数相同的算式,你发现了什么?学生能较快的发现,两个加数交换位置,他们的和不变。同时得到全班同学异口同声的赞同,这是老师提出疑惑:是否所有的两个数相加,交换加数的位置,他们的和不变呢?抛出问题,引出猜想,进而问学生:你还能写出像这样的算式吗?让学生动手写算式,充分经历概念形成的过程,在写的过程中发现问题:这样的算式你能写多少个?“无数个!”紧接着老师追问:“那你能用一个算式概括所有的算式吗?”引导学生探索加法交换律的公式表达。通过汇报、展示,揭示课题。

  二、微课引入,火龙点睛

  在教学中,我提了一个问题:今天所学的《加法交换律》在以前的学习中我们也是否接触到了呢?引导学生回顾旧知,给他们一分钟的思考交流时间,有的同学能够说到一二,有的却一脸茫然,这个时候引入了提前准备好的微视频,其中的配音就是找了本班学生配的。当大家听到熟悉的童声,看到一年级的看图写算式以及三年级的加法验算等,(都用到了加法交换律,只是当时没有把这个概念提出来而已,)豁然开朗,课堂顿时热闹起来。让同学们把前面的旧知和今天的新授结合起来,加深了新知的理解,起到了画龙点睛的效果。

  三、留下悬念,提升迁移

  在课堂最后,我又给孩子们抛出了一个悬念:既然加法有交换律,那减法呢,除法和乘法呢?这个问题不仅引起了学生的兴趣,更为后面的学习埋下了伏笔。我看到学生们不由自主的在本子上写出算式进行验证,说明本节课的数学思想方法已经潜移默化到他们的脑海中。他们能很快的通过举例论证来否定减法和除法没有。“而乘法有吗?在后面的学习中我们将继续探讨这个问题”由此结束本节课。

  总体来说,本节课达到了预期的效果,让加法交换律深入了他们的内心,特别是让他们经历了“提出猜想-举例论证-得出结论”的过程。本节课不仅仅学会了加法交换律,更让他们学会了数学方法,为下节课的加法结合律以及乘法交换律做好了铺垫。更难得可贵的是,学习中不仅仅收获了数学知识,更收获了期间的数学兴趣。

加法交换律教学反思10

  加法交换律是一节概念课,是在学生已经掌握四则运算的基础上进行教学的。本节课的教学设计有意识地让学生运用已有经验,亲身经历“提出猜想—举例验证—得出结论—总结规律”这一探究过程,同时注重学习方法的渗透,为高年级的学习打下基础。

  1、创设问题情景,激发学生学习兴趣。本节课以成语故事“朝三暮四”为切入点,吸引了大部分学生的注意力,自然而然地激发了学生学习的兴趣。同时,为学生进行教学活动创设了良好的氛围,这样设计,让学生在快乐的氛围中主动思考,发现规律,为举例验证埋下伏笔。

  2、本节课让学生经历数学知识发生、发展和形成的过程,同时注重数学思想和方法的渗透,通过猜想、验证、类比、归纳,提升学生的理性思维,提高学生应用数学思想方法解决实际问题的能力。

加法交换律教学反思11

  教学“加法交换律”这一块内容时我打破了传统的课堂教学结构,注重培养学生的创新意识和实践能力。整个过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。

  数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标*衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。在教学“加法交换律”这部分内容中,我在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律”,同时可迁移到“乘法”中来,获得“乘法交换律”。在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。

加法交换律教学反思12

  《加法交换律》是人教版四年级下册第三单元第一节概念课,是在学生已经掌握四则运算的基础上进行教学。本节课的教学设计有意识地让学生运用已有经验,让学生亲身经历这一规律的发现过程,同时注重学习方法的渗透,为高年级的学习打下基础。新课标指出,让学生经历有效地探索过程。教学中以学生为主体,教师为主导,激励学生动手、动脑、动口积极探究问题,促使学生积极主动地参与到“倾听故事——提出猜想——举例验证——得出结论”这一数学学习过程。现对本节课的教学设计说以下几点:

  1、创设问题情景,激发学生学习兴趣本节课以成语故事《朝三暮四》为切入点,吸引了大部分学生的注意力,自然而然激发学生学习的兴趣。同时,为学生进行教学活动创设了良好的氛围。通过教师设问:“故事讲完了,你想说些什么?”水到渠成地引出数学算式“3+4=4+3”,进而提出猜想“交换两个加数的位置,和不变?”。这样设计,让学生在快乐的氛围中主动思考,发现规律,为举例验证埋下伏笔。

  2、组内交流讨论,举例验证猜想教师引导学生思考举出怎样的例子去验证猜想?应该举多少个?意在渗透举例验证这一数学方法,同时让学生初步感知“无数”的概念。

  在小组讨论的同时,教师及时进行点拨,引导学生举出如下例子:

  1、3+6=6+3,4+5=5+4,7+8=8+7

  2、1+2=2+1,12+13=13+12,100+200=200+100,20xx+3000=3000+20003、0+5=5+0,1|4+2|4=2|4+1|4,1.02+2.03=2.03+1.02小组汇报后,让学生评价各小组举例,真切体验“举例验证要考虑到方方面面”。

  3、练习层层深入,巩固所学新知为了让学生巩固本节课所学的知识,为学生提供了充分的练习内容。让学生利用加法交换律进行填空即可,使学生即时运用掌握的知识。本节课使学生由简单应用到灵活应用的练习中,掌握本节课的基础知识,同时又培养了数学思想。本节课的教学设计比较创新,打破了传统教学观察得结论的方法,而故事引入,提出猜想,举例验证,和学校提倡的“主体多元,合作探究”教学模式相吻合。同时,也适合本学段学生的发展特点、认知规律。当然,在实际的教学过程中,也存在很多的缺点和不足,如下:

  1、在引导学生思考举怎样的例子来验证猜想这一环节,处理的不够恰当。不是学生不会思考,是教师的设问指向性不够明确。比如,可更改为“我们是不是可以再举一些加法算式的例子来验证呢?”,让学生明白举例是指举加法算式,然后交换他们的位置,看和是否相等。

  2、在让学生体验“无穷”思想时,没有达到预设的教学目的。课堂教学时,当学生举了大量的例子之后,教师询问是否可以验证我们的猜想时,有的学生还是坚持认为不可以,一定要举无数个例子才行。此时,可自然衔接,引入用字母a和b可表示任意数。这样,我想比教师生硬地解释,刻意地让学生用自己喜欢的方式来表示加法交换律,效果要好得多。

  3、在引出加法交换律时,要明确强调这一规律中,变的是加数的位置,不变的是他们的和。让学生反复地说,a和b可以代表哪些数?

  4、在课堂练习时,可引导学生回顾我们在哪里用到过加法交换律。可利用课本31页第2题,将新学与旧知巧妙地结合。另外,要将每一个习题的设计意图,充分地挖掘出来。

  总的来说,这堂课取得了预期的教学效果。学生不但掌握了加法交换律,更重要的是学会了数学方法,为下节加法结合律以及乘法运算规律打下很好的基础。

加法交换律教学反思13

  本节课为《运算律》的第一课时,而在这一单元之前,学生经过了三年多时间的四则运算学习,并对这些已经有一些感性认识的基础:如在10以内的加法中,学生看着一个图可以列出两道加法算式;在万以内的加法中,通过验算方法的教学,学生已经知道调换加数的位置再加一遍,加得的结果不变。本节课通过一些实例进一步来引导学生进行概括总结。

  在教学中,我首先创设了学生熟悉的生活情境,让学生根据社会实践中的信息自由地提问。这样既培养了学生的发散性思维,以及问题意识,也符合新课程“创造性地使用教材”的理念。在教学中通过对两个算式的观察比较,唤醒学生已有的知识经验,使学生感知加法交换律,组织学生写出类似的等式,帮助学生积累感性材料,丰富学生的表象,同时鼓励学生用自己最喜欢的方法总结出加法交换律和加法结合律,学生能较快的体会出这两种运算律,使学生体会到符号的简洁性和概括性,发展学生的符号感。通过几个层次的练习,使全体同学都参与到有趣的数学学习中,体会到生活处处有数学,充分感受学习数学的乐趣,又巩固了全课的内容,为以后教学应用运算律进行简便计算作好铺垫。

  通本节课的教学,我发现还有很多不足之处。

  一、对学生的课堂表现评价不够及时。

  如在教学加法交换律时,学生写出“6+2=2+6,1+9=9+1…”时,没有很好的解读学生的心理。这位学生之所以写出一位数的算式,是因为他觉得写一位数加一位数的等式非常简单,方便计算。但是作为不完全归纳法,他写出的算式有一定的局限性,没有代表性。此时如果追问学生,“是不是只有一位数加一位数才有这样的规律?”,“那你对这位同学写得有什么建议呢?”这样可以引导学生进一步思考,培养他们思维的严谨性。

  二、没有很好的辨析加法交换律和加法运算律本质特性。

  这样导致了学生在后面的练习中不能进行准确的辨析。可以增加加法交换律和加法交换律的对比环节,对比得出加法交换律的本质特征:加数没有变,结果没有变,运算符号也没有变,但是加数的位置发生了变化。

  总的来说,这堂课取得了较好的效果,不过同时,也发现了很多问题,这些问题有些是客观的,很多是由于本人的教学机智和教学设计还不够。

加法交换律教学反思14

  前段时间听了四年级的一节研讨课——“加法交换律”。课中,教师让学生“用自己喜欢的方式表示加法交换律”,很简单的要求,学生十拿九稳的不会出错,但是学生表现出乎我意料之外:

  学生1:√+×=⊿,×+√=⊿,√+×=×+√;

  学生2:a+b=w=b+a=w

  ……

  回顾课堂,执教者老师笑容甜美,语言亲切,精心设计了这节研讨课:

  教师从学生熟悉的生活情境“李叔叔一天共骑了多少千米?”引入新课,学生列式后分析得出:40+56=56+40,在此基础上教师又利用天*的直观演示,引导学生得到两个等式:50+10=10+50、100+20=20+100,学生观察三个等式交流总结初步体验“加法交换律”。接着教师让学生自主举例子,学生积极踊跃:1+3=3+1,789+121=121+789……,教师再次让学生观察黑板上的7个算式,结合算式让学生进一步的理解“加法交换律”,并比较辨析加法交换律中的“变”和“不变”,最后教师才水到渠成的在黑板上板书课题“加法交换律”。

  对于“加法交换律”的得出教师真是花了心思,下足了功夫。可是从学生“用自己喜欢的方式表示加法交换律”这个环节的表现看得出,学生对“加法交换律”的理解没有到位。问题在哪里呢?我认为,加法交换律的内容比较简单,学生在一、二年级已经有了大量的感性认识,只是到四年级才开始总结提升“把零散的感性认识上升为理性认识”。用语言表述加法交换律,以及用字母表示加法交换律,对学生来说也不是很困难的。因此这节课,对于“加法交换律”的得出,可以更简洁,只用一个情境就可以,天*的效果不是很好,天*小,很多同学没有看见,因此天*的环节可以取消;黑板的板书也可以更简洁,只板书等式;要让学生体会符号表示“加法交换律”的简明以及让学生体验运用“加法交换律”可以使有些计算简便。

  【思考】我们在*时的教学中是不是把探究新知的过程搞复杂了?探究新知的时候,为了追求“完美”,为了讲得“透彻”,我们会步步为营,取各家“精华”放在一起,舍不得“丢弃”,于是,很简单的知识点的探究,在我们的设计下,就……。有位哲人说:“简约到极致,就是美丽。”正所谓:“大道至简”,其实,教学也是如此,“简约”更美,简约的数学课堂必然是美丽的课堂,这种美丽同样有着多层的解读:它是教师个性化教学思想光辉的折射;它是数学学科本身逻辑、严谨、充满理性精神的魅力凸现;它是“简约而不简单”这样一句流行语的生动注解;它是学生在教师引导下用“四两拨千斤”方式自主学习的完美演绎……设计简洁的教学环节,采用简便的教学方法,也能有效,也能让学生喜欢而轻松愉快、积极主动地欣然接纳!

加法交换律教学反思15

  加法的运算定律是运算体系中的普遍规律。为了让学生能够理解并掌握这一规律,以便为今后的应用服务。我在教学中从学生的已有知识经验的实际状态出发,通过抽象建模,大胆猜测, 操作验证,合作总结这四个环节,让学生能够理解加法运算定律的含义,并从过程中体验成功的喜悦或失败的情感。

  本课我把凑整简算的思想贯穿始终,让学生从学习中体验选择简便的方法是学习的最好途径。对于小学生来说,运算定律的理解与运用是培养和发展学生抽象的极好时机。本节课,我引导学生在知识的形成过程中提升学生的思维能力,在课堂上充分调动学生积极性,让孩子们大胆猜想,举例验证、得出结论。纵观本课教学主要有以下几个特点:

  1、在复习引用中,巩固学生的思维基础。

  通过一组口算练习,让学生明确能够凑整十或整百数的两个数加起来比较简便,这个为后面学习结合律打下基础。

  2、大胆猜想,自主探究,培养学生独立思考的能力。

  在教授新课的过程中,我通过提问、设疑,让学生观察—猜测—举例—验证四个环节,同时通过小组合作得出结论。这样既培养了学生的抽象概括能力,同时让学生的思维得到了有效的训练和发展。

  3、多层次的巩固练习,有效提升学生的思维。

  习题设计能有效促进学生思维的发展,本节课在习题设计中,一共设计了四个环节:①基本练习(填空)②变式练习(判断)③巩固练习(计算)④发展提高等。让学生通过练习巩固本课所学内容。

  在教学中也存在以下不足:

  1加法结合律学习在教学中所占比率应加大,学生在学习中还有疑虑,没有学透。

  2、整堂课在时间安排上有些前松后紧,在加法交换律上时间过长,练习的时间相应较短,显得后面在练习中有些仓促。

  3、教师的语言过于*化,不适于中年级学生的年龄。

推荐访问:交换 加法 乘法 《加法交换律和乘法交换律》教学设计3篇 《加法交换律和乘法交换律》教学设计1 《加法交换律和乘法交换律》教学设计1年级

相关文章:

Top